Dimensional Crossover in a Spin-imbalanced Fermi Gas

Shovan Dutta & Erich J. Mueller

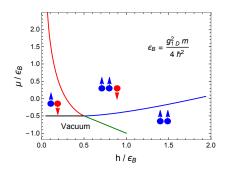
Cornell University

September 23, 2015

arXiv:1508.03352

Phase diagram in 1D : Bethe Ansatz

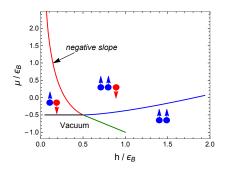
$$\hat{H}_{1\mathsf{D}} = \int\! dz \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(z) ig(\hat{H}^{\mathsf{sp}} - \mu_{\sigma}ig) \hat{\psi}_{\sigma}(z) + g_{1\mathsf{D}} \hat{\psi}_{\uparrow}^{\dagger}(z) \hat{\psi}_{\downarrow}^{\dagger}(z) \hat{\psi}_{\downarrow}(z) \hat{\psi}_{\uparrow}(z) \Big]$$



- Large FFLO region (strong nesting)
- No long-range order

Phase diagram in 1D : Bethe Ansatz

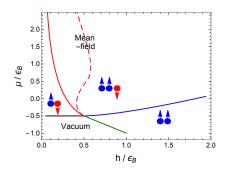
$$\hat{H}_{1\mathsf{D}} = \int\!\!dz \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(z) \big(\hat{H}^{\mathsf{sp}} - \mu_{\sigma}\big) \hat{\psi}_{\sigma}(z) + g_{1\mathsf{D}} \hat{\psi}_{\uparrow}^{\dagger}(z) \hat{\psi}_{\downarrow}^{\dagger}(z) \hat{\psi}_{\downarrow}(z) \hat{\psi}_{\uparrow}(z) \Big]$$



- Large FFLO region (strong nesting)
- No long-range order
- Interactions characterized by $1/(na_{1D})$
 - ⇒ negative slope

Phase diagram in 1D : Bethe Ansatz

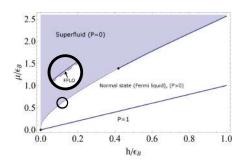
$$\hat{H}_{1\mathsf{D}} = \int\! dz \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(z) ig(\hat{H}^{\mathsf{sp}} - \mu_{\sigma}ig) \hat{\psi}_{\sigma}(z) + g_{1\mathsf{D}} \hat{\psi}_{\uparrow}^{\dagger}(z) \hat{\psi}_{\downarrow}^{\dagger}(z) \hat{\psi}_{\downarrow}(z) \hat{\psi}_{\uparrow}(z) \Big]$$



- Large FFLO region (strong nesting)
- No long-range order
- Interactions characterized by $1/(na_{\mathrm{1D}})$
 - ⇒ negative slope

Phase diagram in 3D: Mean field

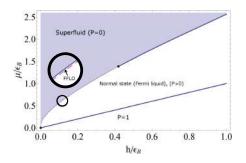
$$\hat{H} = \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\vec{r}) \big(\hat{H}^{\mathsf{sp}} - \mu_{\sigma} \big) \hat{\psi}_{\sigma}(\vec{r}) + g \; \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \Big]$$



- Small FFLO region (weak nesting)
- Long-range order
- Positive slope

Phase diagram in 3D : Mean field

$$\hat{H} = \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\vec{r}) (\hat{H}^{\mathsf{sp}} - \mu_{\sigma}) \hat{\psi}_{\sigma}(\vec{r}) + g \; \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \Big]$$



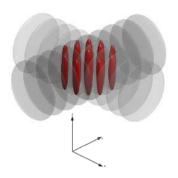
- Small FFLO region (weak nesting)
- Long-range order
- Positive slope
- Other phases proposed : Deformed Fermi surface, Mixed phase, etc.

Crossovers are interesting!

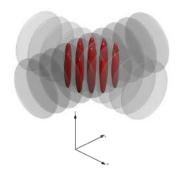
- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)

- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)
- May give rise to new phases not present in 1D or 3D

- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)
- May give rise to new phases not present in 1D or 3D



- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)
- May give rise to new phases not present in 1D or 3D



Controllable parameters : lattice depth, densities, interaction strength

Application: realizing the 1D model

Necessary conditions:

- $V_0/E_R\gg 1 \implies J\to 0$ (isolated tubes)
- ullet Low density, and $T\ll$ band-gap
 - ⇒ transverse motion frozen to the lowest energy level

Application: realizing the 1D model

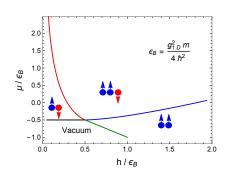
Necessary conditions:

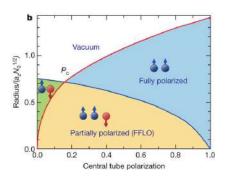
- $V_0/E_R\gg 1 \implies J\to 0$ (isolated tubes)
- ullet Low density, and $T\ll$ band-gap
 - \implies transverse motion frozen to the lowest energy level

Olshanii's mapping to an effective 1D model :

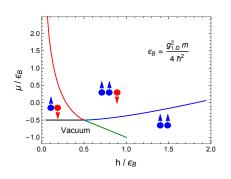
$$rac{d_{\perp}\hbar\omega_{\perp}}{g_{ exttt{1D}}} = rac{d_{\perp}}{2\mathsf{a}_{s}} + rac{\zeta(1/2)}{2\sqrt{2}}$$

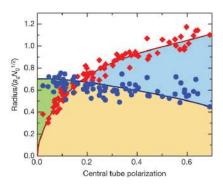
Agrees with experiment! (near unitarity)





Agrees with experiment! (near unitarity)



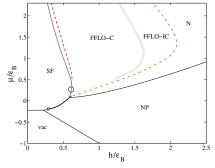


Assumptions:

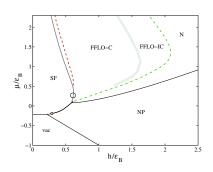
- $J \text{ small} \rightarrow \text{use tight-binding model}$
- low density → use Olshanii's mapping

Assumptions:

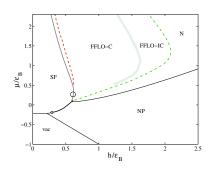
- $J \text{ small} \rightarrow \text{use tight-binding model}$
- low density → use Olshanii's mapping



PRL **99**, 250403 (2007) : $J/\varepsilon_B = 0.08$



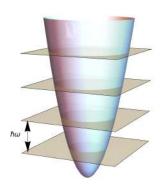
• 1D-like structure for all interactions for small *J*.



- 1D-like structure for all interactions for small *J*.
- predicts a turning point
 - \rightarrow not seen in experiments
 - ightarrow need a more accurate model

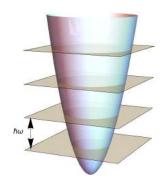
What we did

- Consider a single tube model as a cylindrical harmonic trap
- 1D ightarrow 3D crossover happens as density (or μ) increases



What we did

- Consider a single tube model as a cylindrical harmonic trap
- 1D ightarrow 3D crossover happens as density (or μ) increases
- Find mean-field phase diagram as a function of a_s and T
- Map to an effective 1D model for $\mu < 2\hbar\omega_{\perp}$
 - → density corrections to Olshanii's mapping



Setting up the equations

$$\hat{H} = \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\vec{r}) (\hat{H}^{\mathsf{sp}} - \mu_{\sigma}) \hat{\psi}_{\sigma}(\vec{r}) + g \; \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \Big]$$
where $\hat{H}^{\mathsf{sp}} = -\hbar^2 \nabla^2 / (2m) + (1/2) m \omega_{\perp}^2 (x^2 + y^2)$.

Setting up the equations

$$\hat{H} = \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\vec{r}) (\hat{H}^{\mathsf{sp}} - \mu_{\sigma}) \hat{\psi}_{\sigma}(\vec{r}) + g \; \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \Big]$$
where $\hat{H}^{\mathsf{sp}} = -\hbar^2 \nabla^2 / (2m) + (1/2) m \omega_{\perp}^2 (x^2 + y^2)$.
Define $\Delta(\vec{r}) = g \langle \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \rangle$

Setting up the equations

$$\begin{split} \hat{H} &= \int d^3r \Big[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\vec{r}) \big(\hat{H}^{\mathsf{sp}} - \mu_{\sigma} \big) \hat{\psi}_{\sigma}(\vec{r}) + g \; \hat{\psi}_{\uparrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}^{\dagger}(\vec{r}) \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \Big] \\ \text{where } \hat{H}^{\mathsf{sp}} &= -\hbar^2 \nabla^2/(2m) + (1/2)m\omega_{\perp}^2(x^2 + y^2). \end{split}$$

Define
$$\Delta(\vec{r}) = g \langle \hat{\psi}_{\downarrow}(\vec{r}) \hat{\psi}_{\uparrow}(\vec{r}) \rangle$$

Diagonalize the BdG Hamiltonian :

$$\begin{split} \hat{H}^{\text{MF}} &= \sum_{n} [(E_{n} - h) \hat{\gamma}_{n\uparrow}^{\dagger} \hat{\gamma}_{n\uparrow} + (E_{n} + h) \hat{\gamma}_{n\downarrow}^{\dagger} \hat{\gamma}_{n\downarrow} + (\varepsilon_{n} - E_{n})] - \frac{1}{g} \int d^{3}r |\Delta(\vec{r})|^{2} \\ \text{where } \begin{pmatrix} \hat{H}^{\text{sp}} - \mu & \Delta(\vec{r}) \\ \Delta^{*}(\vec{r}) & \mu - \hat{H}^{\text{sp}} \end{pmatrix} \begin{pmatrix} u(\vec{r}) \\ v(\vec{r}) \end{pmatrix} = E \begin{pmatrix} u(\vec{r}) \\ v(\vec{r}) \end{pmatrix}, \quad E_{n} \geqslant 0 \end{split}$$

Regularization

Ground state energy (T = 0):

$$\mathcal{E} = \sum_{n} [\alpha(E_n - h) + \varepsilon_n - E_n] - \frac{1}{g} \int d^3r |\Delta(\vec{r})|^2.$$

Regularization

Ground state energy (T = 0):

$$\mathcal{E} = \sum_{n} [\alpha(E_n - h) + \varepsilon_n - E_n] - \frac{1}{g} \int d^3r |\Delta(\vec{r})|^2.$$

g is related to a_s : $\frac{1}{g} = \frac{m}{4\pi\hbar^2 a_s} - \int \frac{d^3k}{(2\pi)^3} \frac{m}{\hbar^2 k^2}$.

Regularization

Ground state energy (T = 0):

$$\mathcal{E} = \sum_{n} [\alpha(E_n - h) + \varepsilon_n - E_n] - \frac{1}{g} \int d^3r |\Delta(\vec{r})|^2.$$

g is related to a_s : $\frac{1}{g}=\frac{m}{4\pi\hbar^2 a_s}-\int \frac{d^3k}{(2\pi)^3}\frac{m}{\hbar^2k^2}.$

For large n, $|\varepsilon_n - E_n| \ll \varepsilon_n \implies$ use perturbation theory

$$\implies \mathcal{E} = \mathcal{E}_{\mathsf{exact}} - \sum_{n} \langle n | \hat{\Delta} \hat{\Delta}^{\dagger} | n \rangle / (2\varepsilon_{n}) - \frac{1}{g} \int d^{3}r |\Delta(\vec{r})|^{2}$$

divergences cancel out

Ansatz for $\Delta(\vec{r})$

$$\Delta(\vec{r}) = \Delta_0 e^{-(x^2+y^2)/\xi^2} e^{iqz}$$

• Variational parameters : Δ_0 , ξ , q

Ansatz for $\Delta(\vec{r})$

$$\Delta(\vec{r}) = \Delta_0 e^{-(x^2+y^2)/\xi^2} e^{iqz}$$

- Variational parameters : Δ_0 , ξ , q
- Allowed states : FF, BCS (q=0), Normal $(\Delta_0=0)$, and breached-pair (q=0)

Ansatz for $\Delta(\vec{r})$

$$\Delta(\vec{r}) = \Delta_0 e^{-(x^2+y^2)/\xi^2} e^{iqz}$$

- Variational parameters : Δ_0 , ξ , q
- ullet Allowed states : FF, BCS (q=0), Normal $(\Delta_0=0)$, and breached-pair (q=0)
- LO ansatz yields very similar results

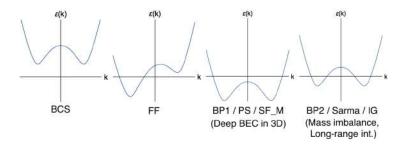
Breached-pair state

What it is: a coherent mixture of Cooper pairs and unpaired fermions, which occupy different regions in momentum-space.

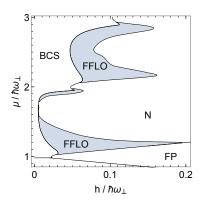
Breached-pair state

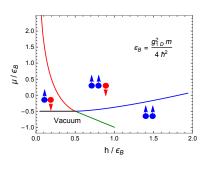
What it is: a coherent mixture of Cooper pairs and unpaired fermions, which occupy different regions in momentum-space.

Example dispersions in 1D:



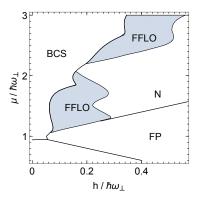
Phase diagram at weak interactions $(a_s = -d_{\perp}/3)$



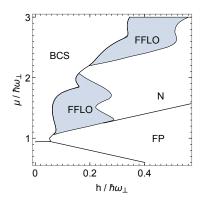


1D-like structure that repeats as new channels open

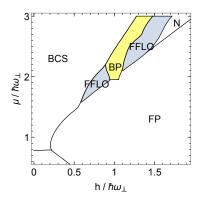
Change with stronger interactions $(a_s = -2d_{\perp}/3)$



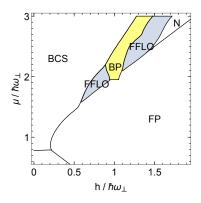
Change with stronger interactions $(a_s = -2d_{\perp}/3)$



- Crossover to 3D happens at a lower density (μ)
- The SF region grows



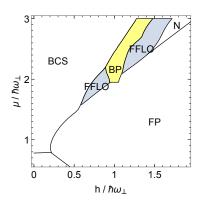
- Stable BP phase emerges
- 3D-like for all densities

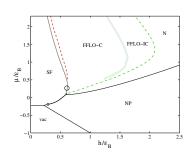


- Stable BP phase emerges
- 3D-like for all densities
- Experiment finds 1D-like behavior at low densities $(\mu \sim 1.1 \hbar \omega_\perp)$



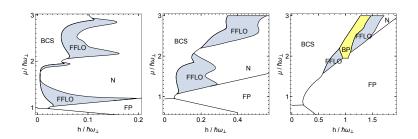
- Stable BP phase emerges
- 3D-like for all densities
- Experiment finds 1D-like behavior at low densities $(\mu \sim 1.1 \hbar \omega_\perp)$
- DFT produces 3D-like behavior (+BP)!



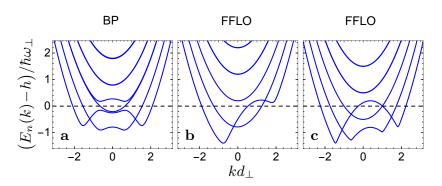


Does not agree with mean-field results with Olshanii's mapping

Phase diagrams



FF and BP dispersions



Different curves denote different transverse modes

Mapping to effective 1D model for $\mu < 2\hbar\omega_{\perp}$

Degenerate 2nd-order perturbation theory :

$$\frac{d_{\perp}\hbar\omega_{\perp}}{g_{\text{1D}}} = f(\frac{a_{s}}{d_{\perp}}, \frac{\mu}{\hbar\omega_{\perp}}, \frac{\Delta_{0}}{\hbar\omega_{\perp}}, \frac{\xi}{d_{\perp}}, qd_{\perp})$$

Mapping to effective 1D model for $\mu < 2\hbar\omega_{\perp}$

Degenerate 2nd-order perturbation theory :

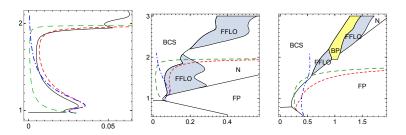
$$\frac{\textit{d}_{\perp}\hbar\omega_{\perp}}{\textit{g}_{\textrm{1D}}} = \textit{f}\big(\frac{\textit{a}_{\textrm{s}}}{\textit{d}_{\perp}},\frac{\mu}{\hbar\omega_{\perp}},\frac{\Delta_{0}}{\hbar\omega_{\perp}},\frac{\xi}{\textit{d}_{\perp}},\textit{q}\textit{d}_{\perp}\big)$$

Consider the limit $\Delta_0, q o 0$, $\xi/d_\perp o 1$:

$$\begin{split} &\frac{1}{\tilde{g}_{1\mathrm{D}}} = \frac{1}{2\tilde{s}_s} + \frac{\zeta(\frac{1}{2}, 2 - \tilde{\mu})}{2\sqrt{2}} \\ &- \frac{\sqrt{2}}{\pi} \Theta(\tilde{\mu} - 1) \sum_{j=1}^{\infty} \frac{2^{-2j}}{\sqrt{j+1-\tilde{\mu}}} \tan^{-1} \sqrt{\frac{\tilde{\mu} - 1}{j+1-\tilde{\mu}}} \;, \end{split}$$

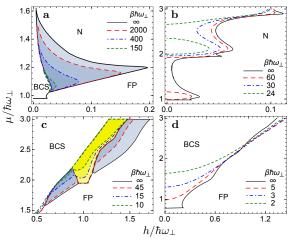
As
$$\mu \to \hbar \omega_{\perp}$$
, $1/\tilde{g}_{1D}=1/(2\tilde{a}_s)+\zeta(1/2)/(2\sqrt{2})$ (Olshanii!)

Comparisons of effective models



Red \rightarrow Mean-field with our mapping Blue \rightarrow Mean-field with Olshanii's mapping Green \rightarrow Bethe Ansatz with our mapping

Effect of temperature



arXiv:1508.03352

