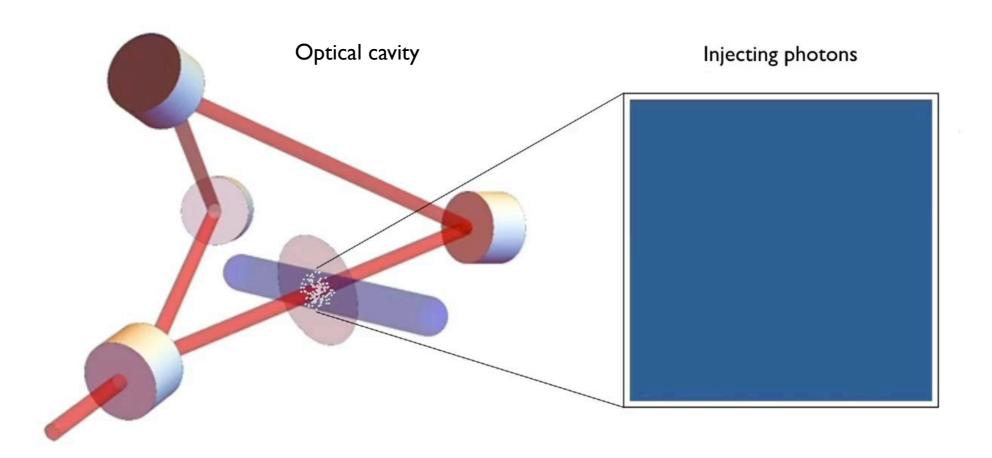
Creating and Braiding Anyons in an Optical Cavity

Shovan Dutta — Cornell University



Other projects during PhD

Published:

- Kinetics of Bose-Einstein condensation in a "dimple" trap
 PRA 91, 013601 (2015)
- Dynamics of spin impurities in a Bose lattice gas
 PRA 88, 053601 (2013)
- Dimensional crossover in a spin-imbalanced Fermi gas
 PRA 94, 063627 (2016)
- Collective modes of a soliton train in a Fermi superfluid
 PRL 118, 260402 (2017)
- Engineering FFLO-superfluid phases in a Fermi gas
 PRA 96, 023612 (2017)

Others:

- Thermalization in a quasi-ID trap
- Spin-imbalanced Fermi gas in an array of coupled tubes
- Nucleation of superfluid-B phase in liquid Helium-3

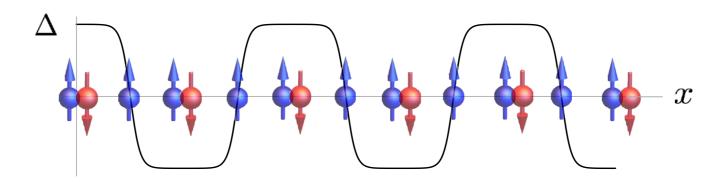
Other projects during PhD

Pι Dynamics in Bose gases - Kinetics of Bose condensation in a dimple trap PRA 91, 013601 (2015) Reservoir Reservoir Energy Model Dimple Dimple n- Dynamics of spin impurities in a 1D lattice PRA 88, 053601 (2013)

Other projects during PhD

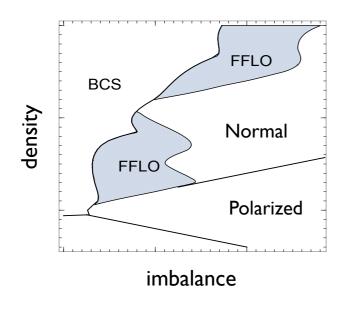
Pu Exotic superfluidity in Fermi gases

FFLO phase — spin-imbalanced superfluid with a train of domain walls



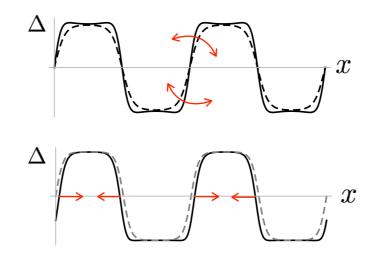
ID—3D crossover

PRA 94, 063627 (2016)



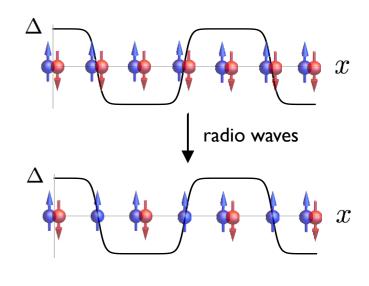
Collective modes

PRL 118, 260402 (2017)

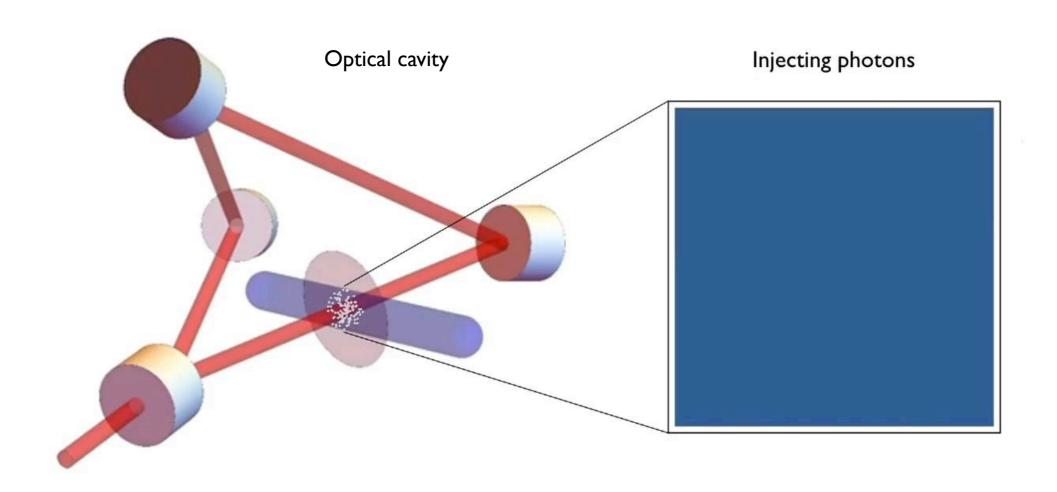


Protocol for engineering

PRA 96, 023612 (2017)

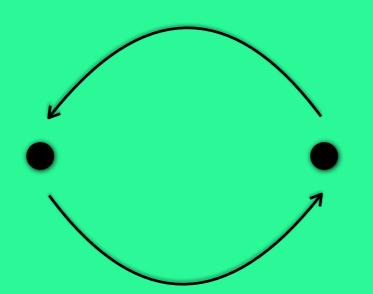


Creating and Braiding Anyons in an Optical Cavity



Motivation: Anyons

- Fractional Exchange Statistics: exotic physics in flatland



Bosons: +1

Fermions: -1

Anyons: $e^{i\phi_s}$

Non-Abelian: U

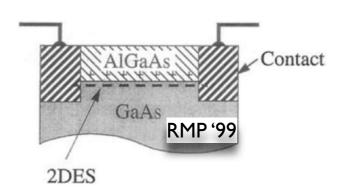
- Proposed hardware for topological quantum computation (A. Kitaev '03; C. Nayak et al. '08)

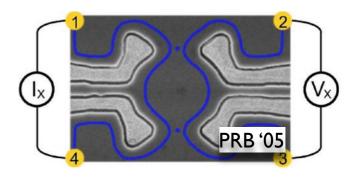
Challenge:

- 1. Create many-body state with anyonic excitations
 - fractional quantum Hall (FQH) states
- 2. Create quasiparticles
- 3. Move them around one another
- 4. Measure accumulated phase

Platforms

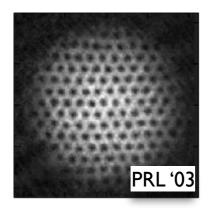
Interacting 2D fermions in a magnetic field

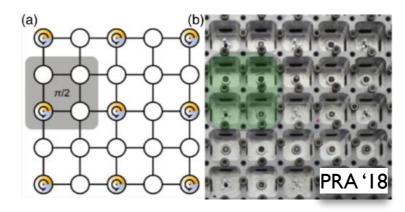


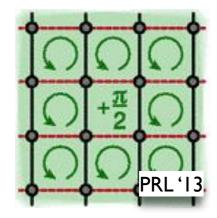


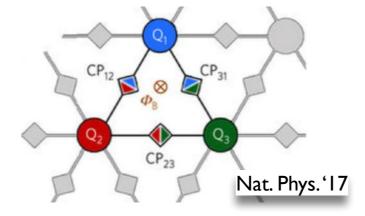
Interacting 2D bosons in an effective magnetic field

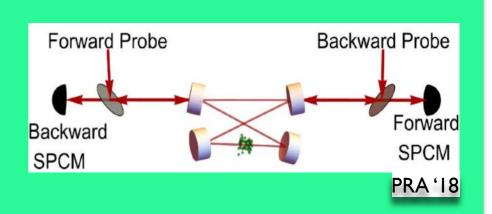






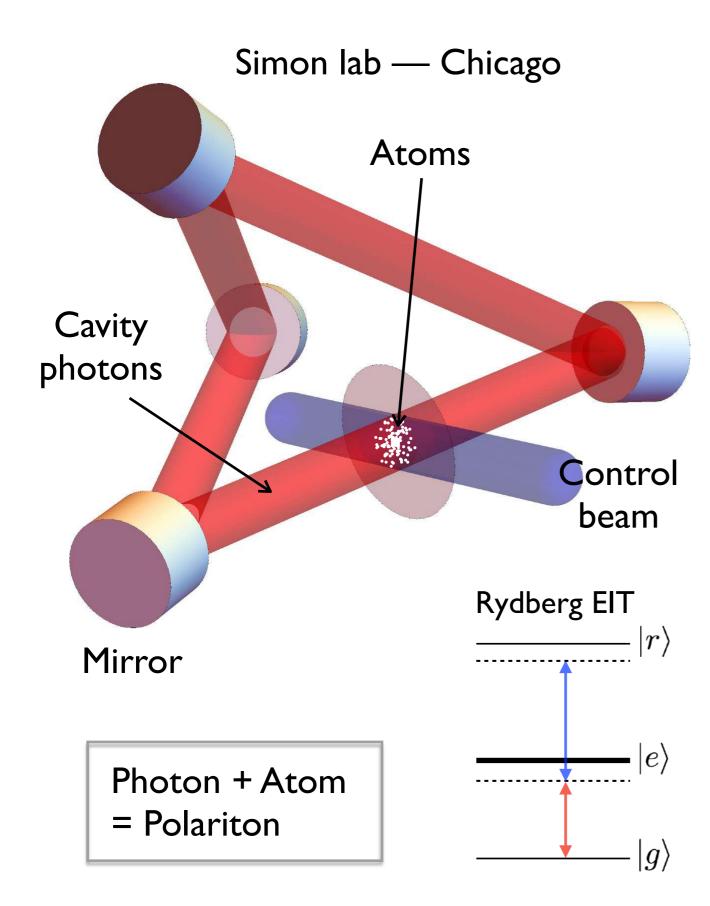






pros: driven state preparation versatile in/out coupling

cons: photon loss
weak interaction
(matter mediated)



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

- transverse harmonic confinement

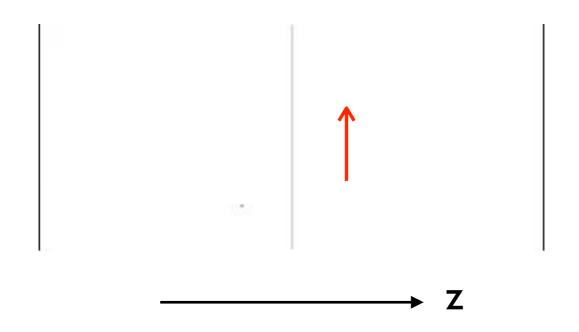
Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

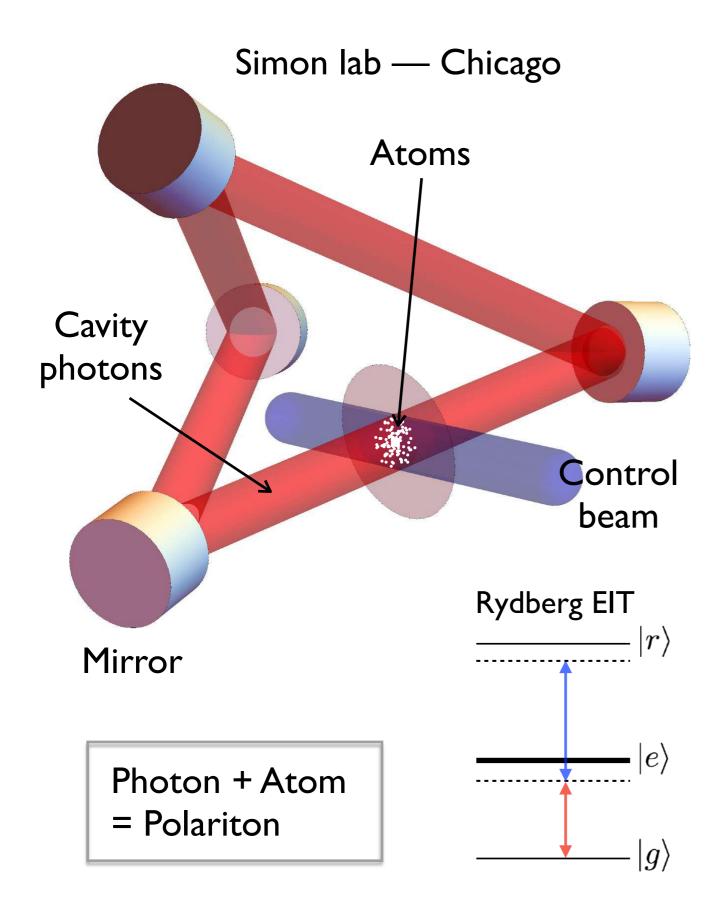
- long-lived interacting polaritons
- photon dynamics + Rydberg int.

Near-degenerate cavity — effective transverse dynamics



Uniform motion along transverse direction at speed p_{\perp}/M_{\perp}

$$\begin{split} E &= \sqrt{p_z^2 + p_\perp^2} c \\ &\approx p_z c + \frac{p_\perp^2 c}{2p_z} \\ &= E_z + \frac{p_\perp^2}{2(E_z/c^2)} \\ &\uparrow \\ M_\perp \end{split}$$



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

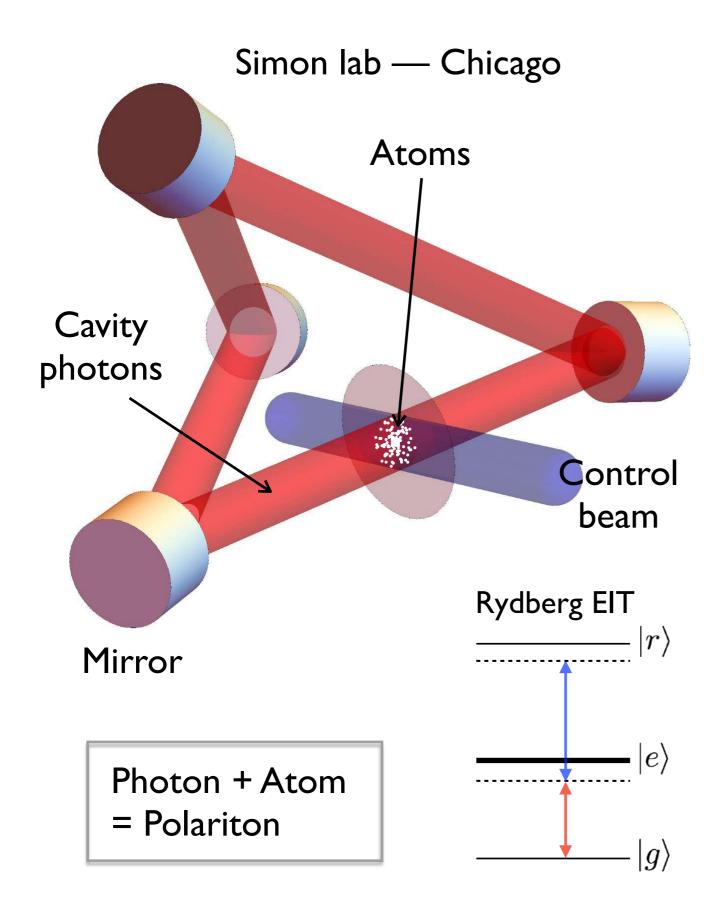
- transverse harmonic confinement

Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

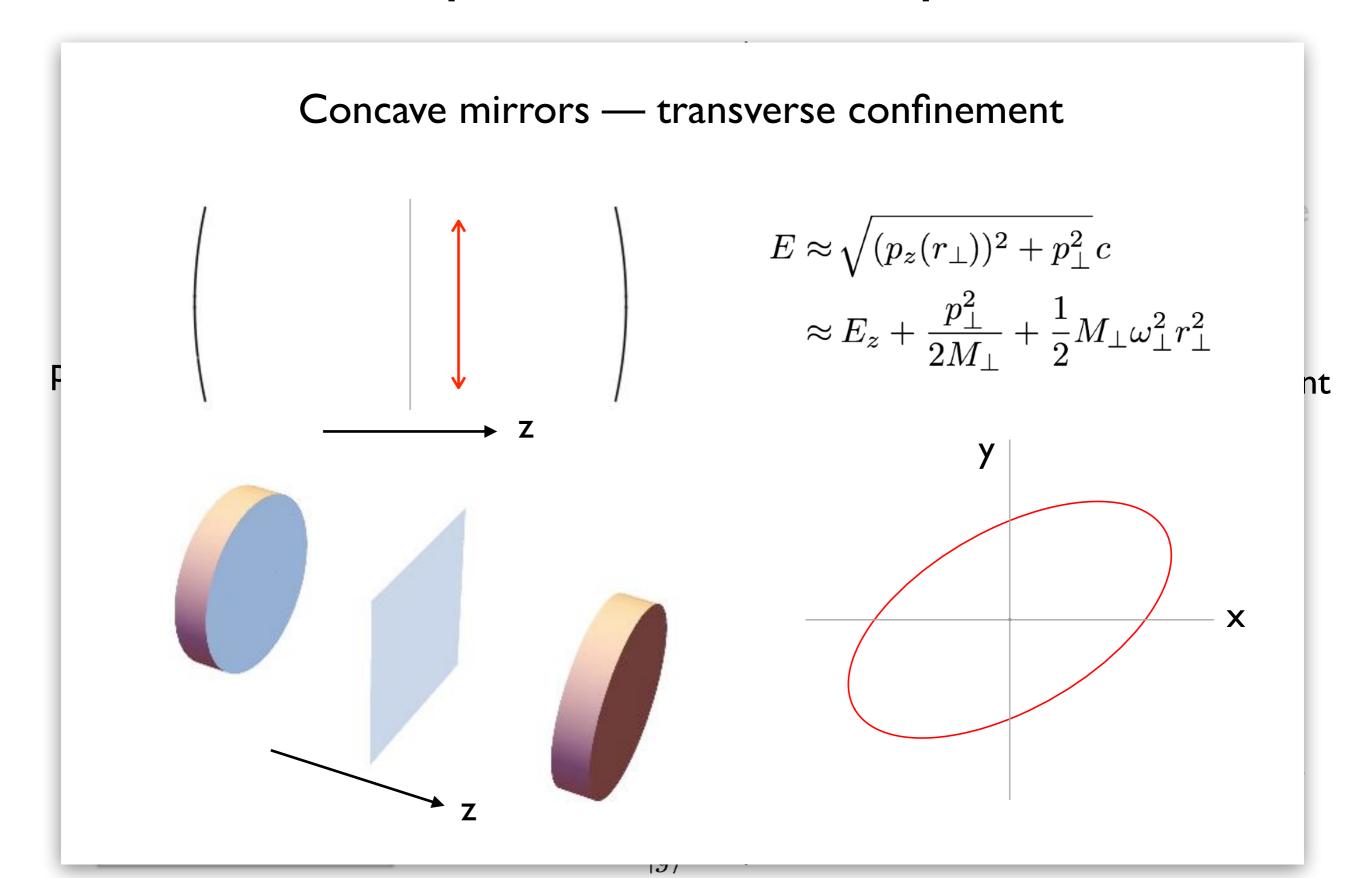
- transverse harmonic confinement

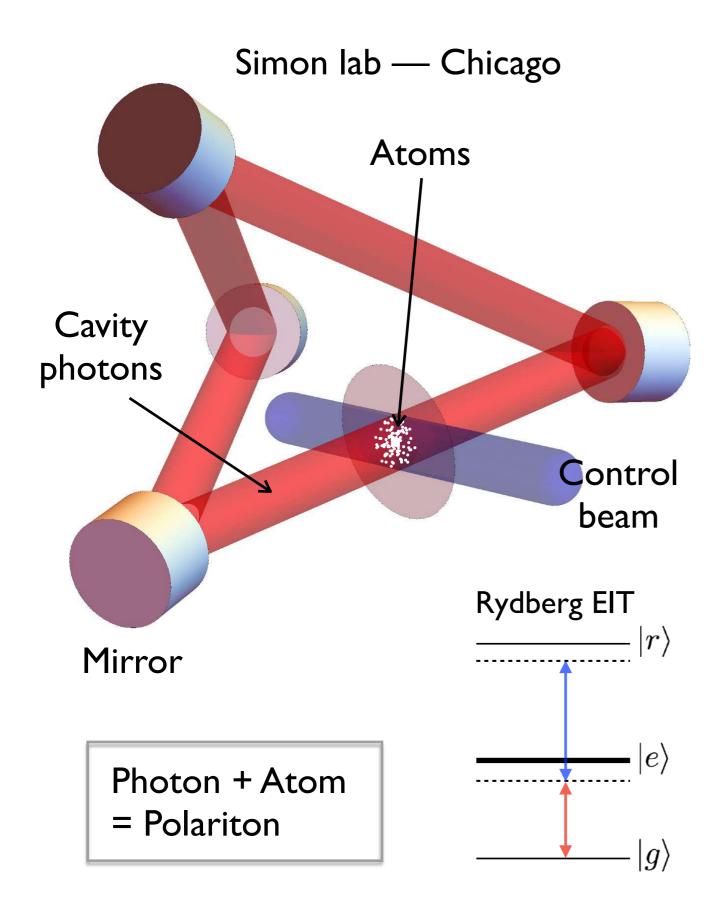
Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.





Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

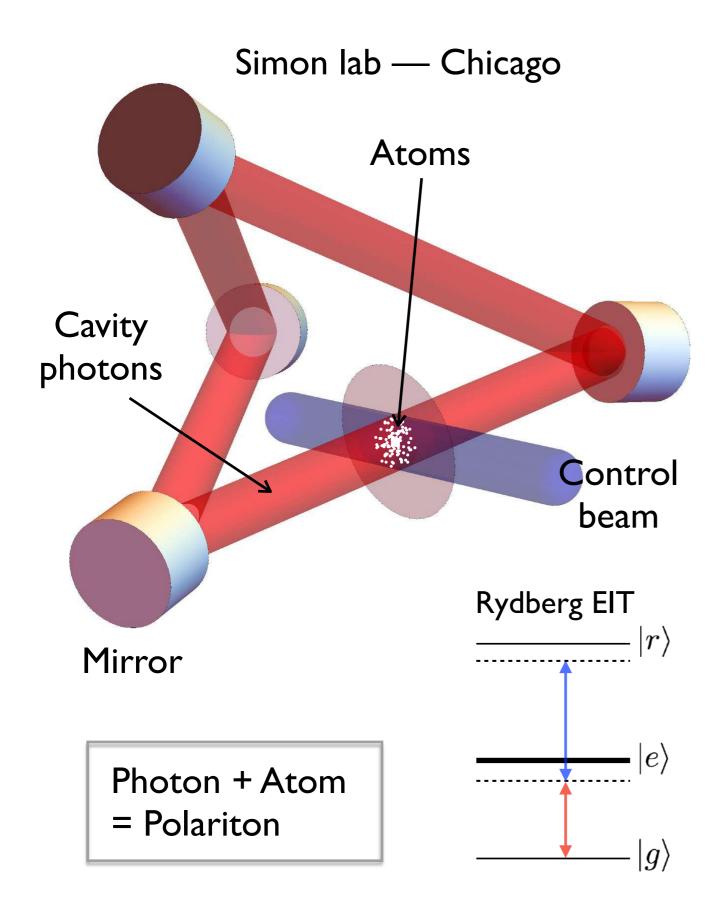
- transverse harmonic confinement

Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

- transverse harmonic confinement

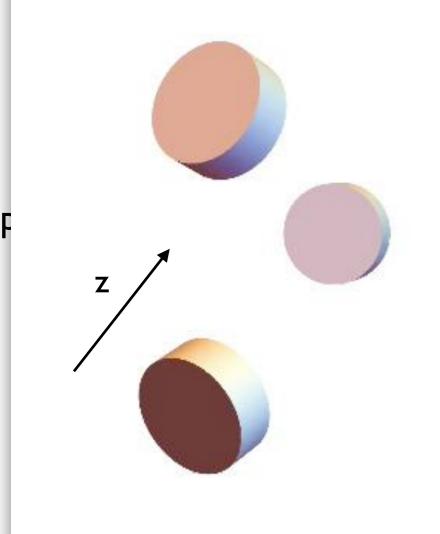
Non-planar geometry

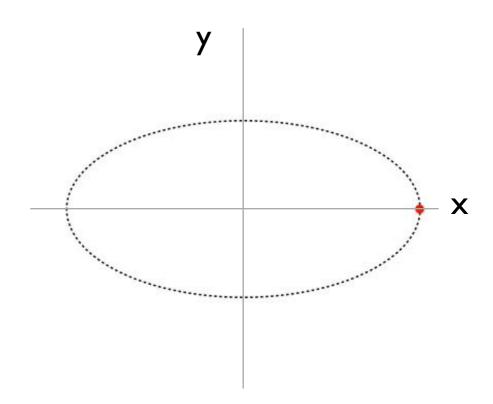
- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.

Non-planar geometry — effective magnetic field

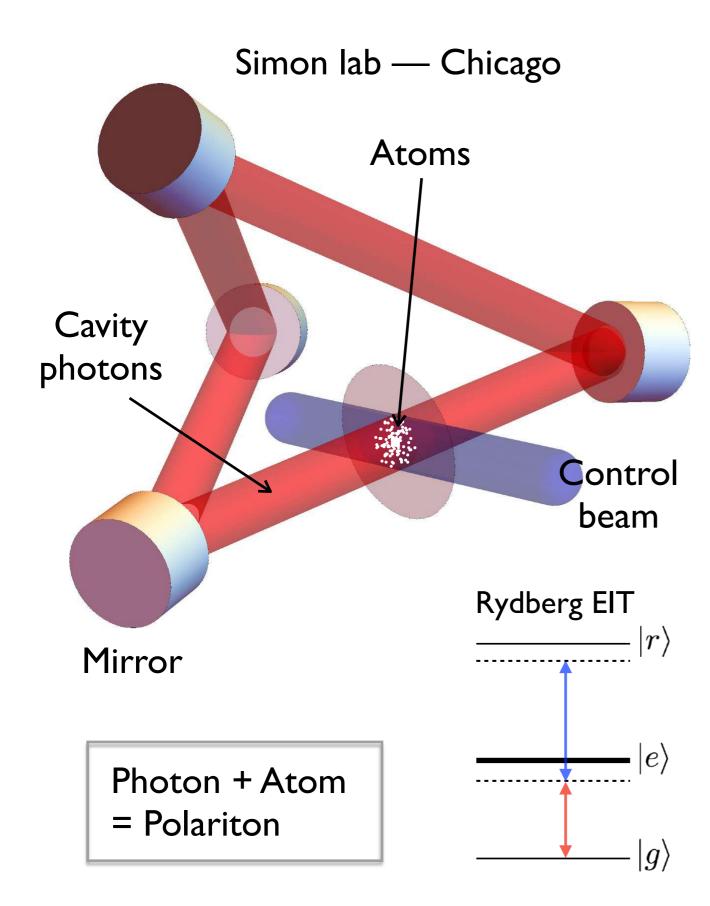




Analogous to a uniformly rotating frame

$$\vec{F}_{\text{Coriolis}} = \vec{v}_{\perp} \times (2M_{\perp}\vec{\omega}_{\text{rot}}) \equiv \vec{v}_{\perp} \times (q\vec{B}_{\text{eff}})$$

$$\vec{F}_{\text{Centrifugal}} = -\vec{\nabla}_{\perp} \left(-\frac{1}{2} M_{\perp} \omega_{\text{rot}}^2 r_{\perp}^2 \right)$$



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

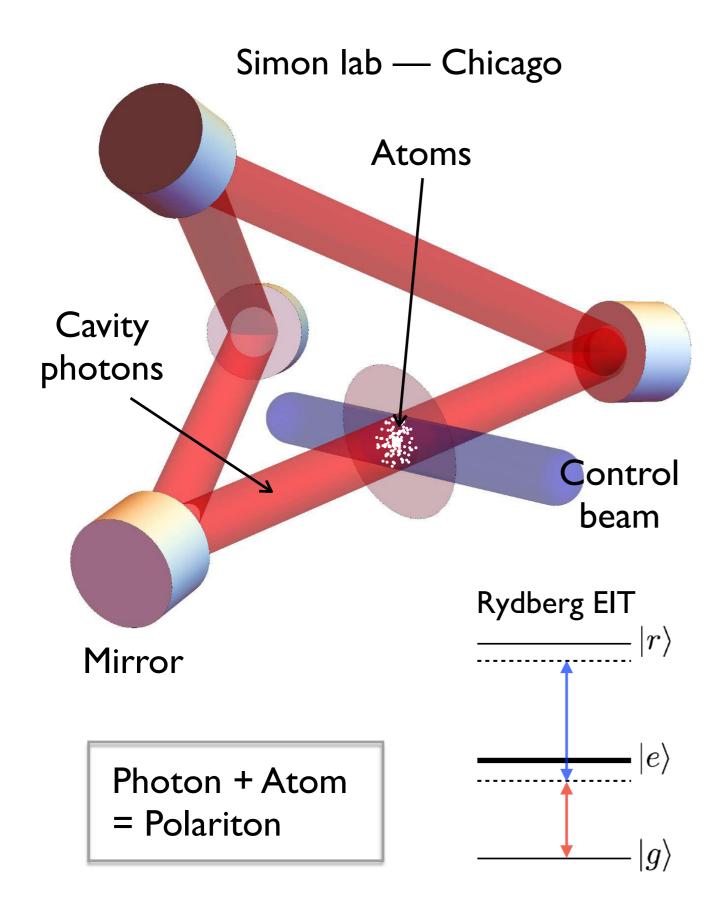
- transverse harmonic confinement

Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

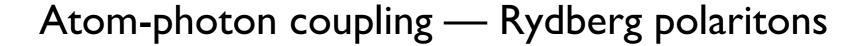
- transverse harmonic confinement

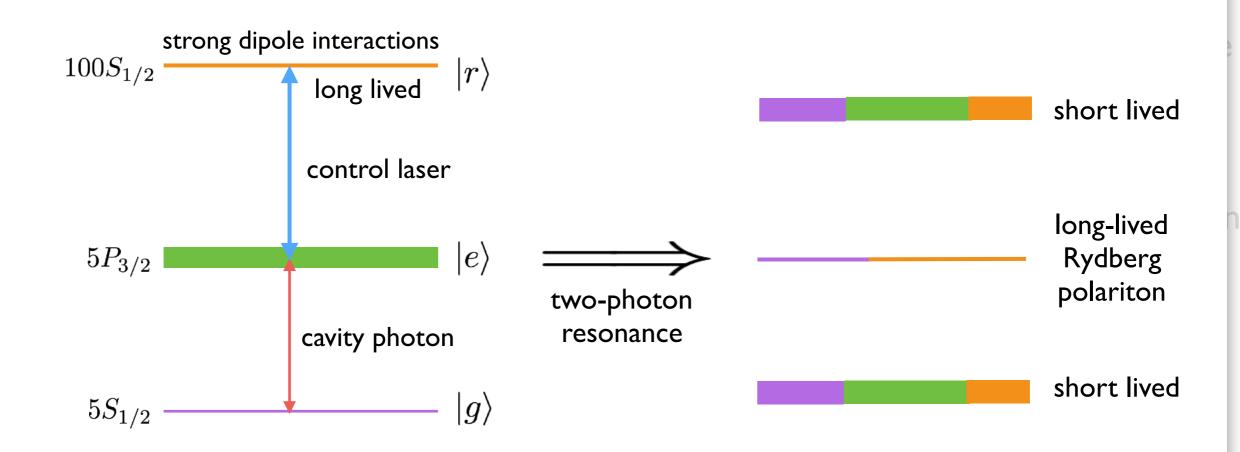
Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

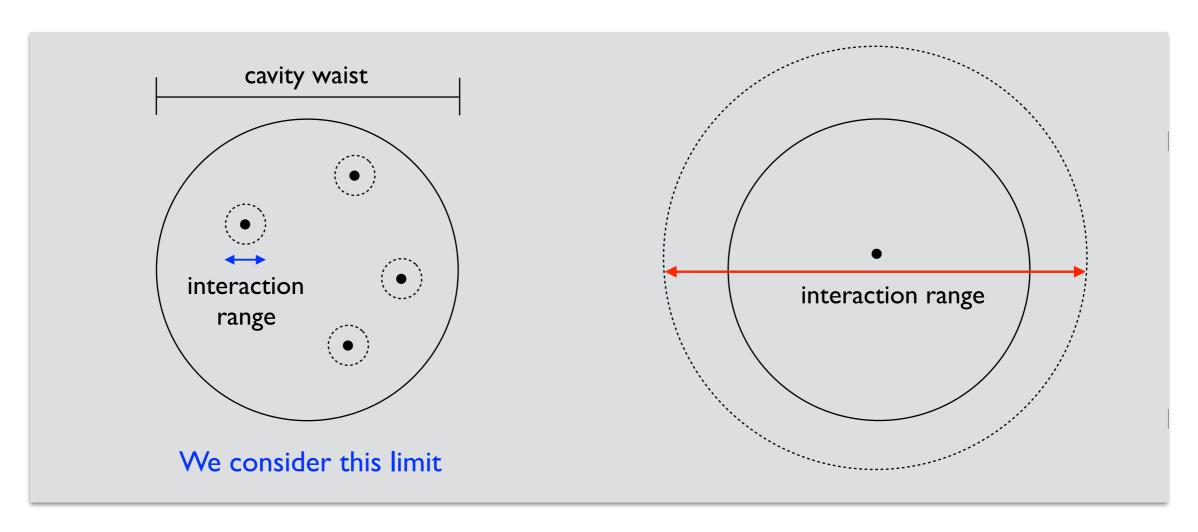
- long-lived interacting polaritons
- photon dynamics + Rydberg int.



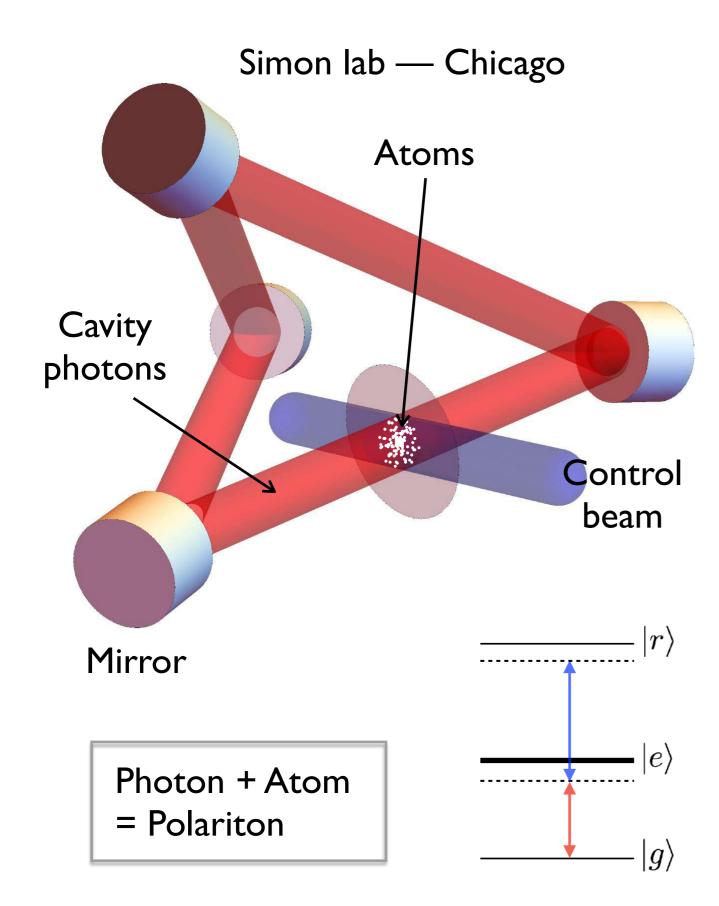


Project dynamics onto polariton mode — atom-photon hybrid — dynamics of photons — interactions of Rydberg

Atom-photon coupling — Rydberg polaritons



Project dynamics onto polariton mode — atom-photon hybrid — dynamics of photons — interactions of Rydberg



Near-degenerate cavity

- longitudinal mode number fixed
- 2D dynamics in transverse plane with finite effective mass

Concave mirrors

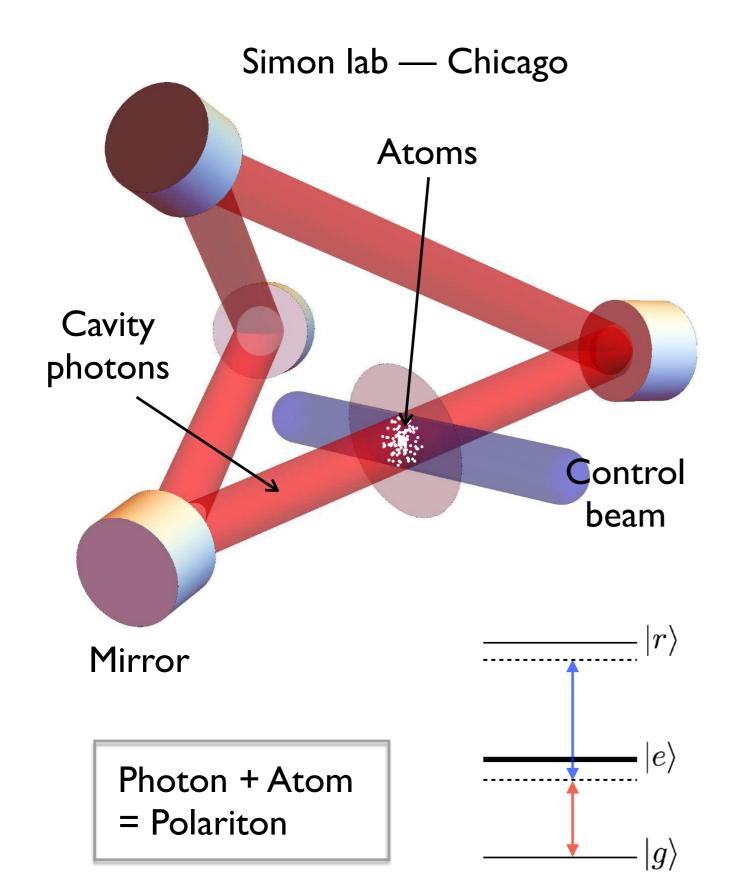
- transverse harmonic confinement

Non-planar geometry

- light field rotated about axis
- effective magnetic field

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.



Near-degenerate cavity

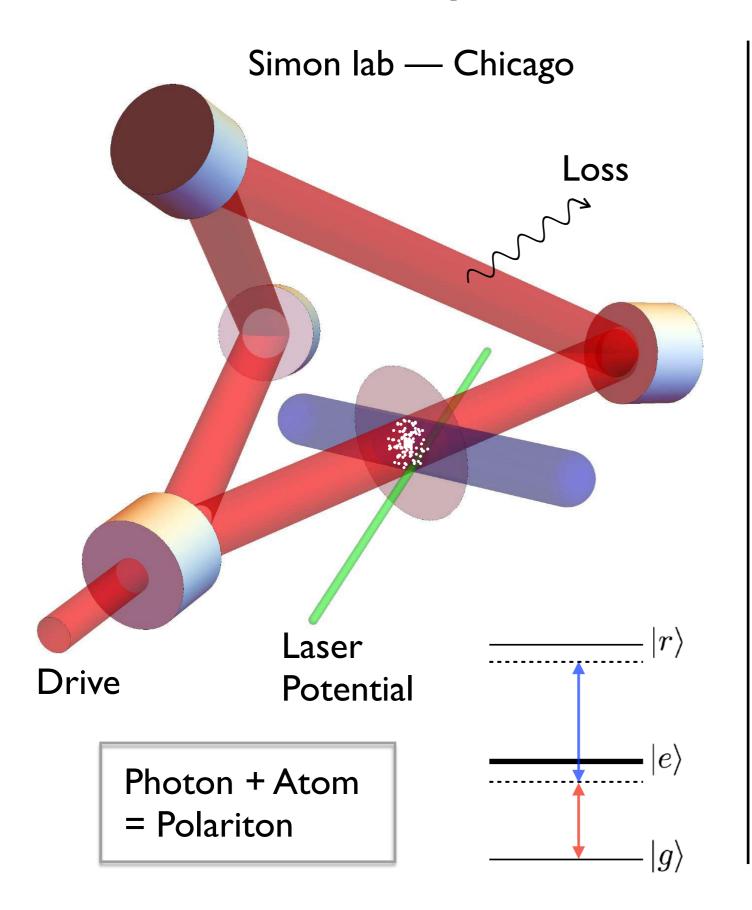
- longitudinal mode number fixed

2D massive harmonically trapped interacting bosons in magnetic field

nt

Atom-photon coupling

- long-lived interacting polaritons
- photon dynamics + Rydberg int.



2D massive harmonically trapped interacting bosons in magnetic field

Drive, Potential, Loss

Model

$$\hat{H} = \int d^2r \, \hat{\psi}^\dagger \left[\underbrace{\frac{(-i\vec{\nabla} - M\omega_B r \hat{\varphi})^2}{2M}}_{\text{kinetic}} + \underbrace{\frac{1}{2} M\omega_T^2 r^2}_{\text{trap}} \right] \hat{\psi} + \pi l^2 V_0 \, \hat{\psi}^\dagger \hat{\psi}^\dagger \hat{\psi} \hat{\psi}$$

$$+ \underbrace{F(\vec{r},t)\,\hat{\psi}^{\dagger} + F^{*}(\vec{r},t)\,\hat{\psi}}_{\text{drive}} + \underbrace{U(\vec{r},t)\,\hat{\psi}^{\dagger}\hat{\psi}}_{\text{potential}}$$

M — polariton mass $(M \sim 10^{-4} m_e)$

 $2\omega_B$ — cyclotron frequency $(\omega_B \sim 1~\mathrm{GHz})$

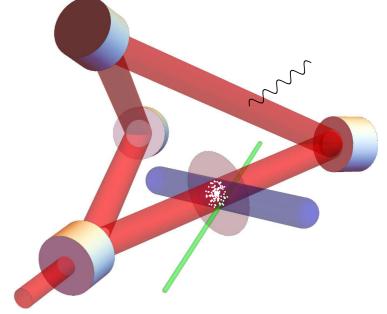
 ω_T — trap frequency ($\omega_T \sim 0-10 \mathrm{\ MHz}$)

l — magnetic length $(l \sim 20~\mu\mathrm{m})$

 V_0 — two-particle interaction energy $(V_0 \sim 5 \mathrm{~MHz})$

 γ — inverse polariton lifetime ($\gamma \sim 0.1~\mathrm{MHz}$)

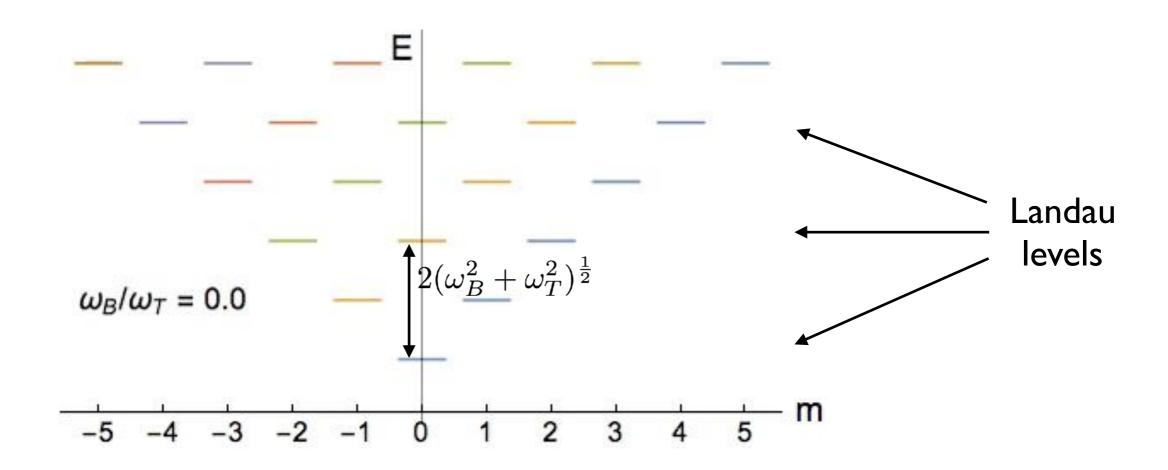
 $\omega_T, V_0, \gamma \ll \omega_B \implies \text{Lowest Landau Level physics}$



Single-particle spectrum

Single-particle Hamiltonian:

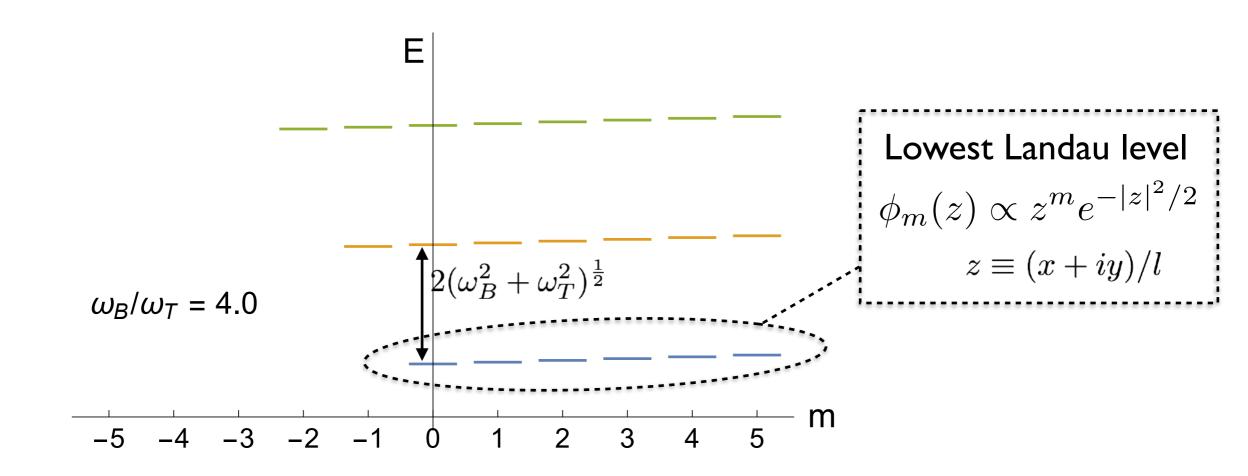
$$\hat{H}_0 = \frac{(p_x + M\omega_B y)^2 + (p_y - M\omega_B x)^2}{2M} + \frac{1}{2}M\omega_T^2(x^2 + y^2)$$
$$= \frac{p^2}{2M} + \frac{1}{2}M(\omega_B^2 + \omega_T^2)r^2 - \omega_B L$$



Single-particle spectrum

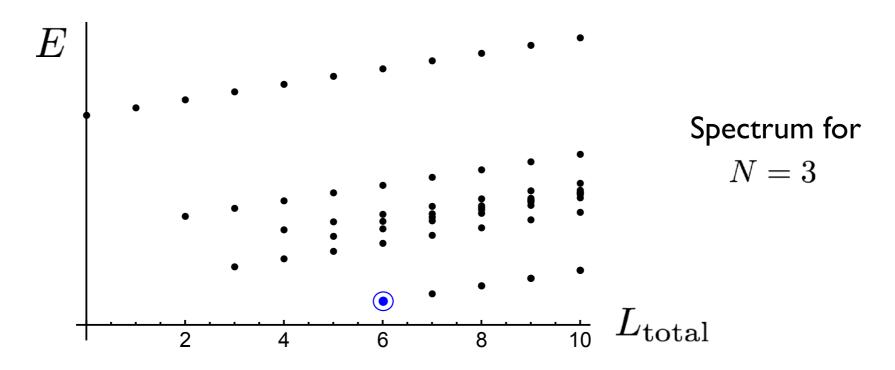
Single-particle Hamiltonian:

$$\hat{H}_0 = \frac{(p_x + M\omega_B y)^2 + (p_y - M\omega_B x)^2}{2M} + \frac{1}{2}M\omega_T^2(x^2 + y^2)$$
$$= \frac{p^2}{2M} + \frac{1}{2}M(\omega_B^2 + \omega_T^2)r^2 - \omega_B L$$



Laughlin states

Many-body spectrum:



Many-body eigenstate: V=1/2 Laughlin state

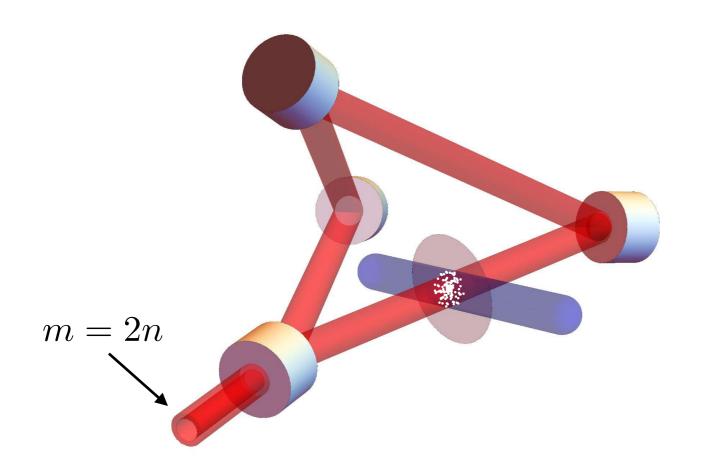
$$\Phi_N(z_1, z_2, \dots, z_N) \propto \prod_{j < k} (z_j - z_k)^2 e^{-\sum_i |z_i|^2/2}$$

- has total angular momentum $L_N = N(N-1)$
- Drive $|\Phi_N\rangle \to |\Phi_{N+1}\rangle$ by pumping at $m=L_{N+1}-L_N=2N$

Idea: inject photons one-by-one such that $|\Phi_0\rangle \to |\Phi_1\rangle \to \dots |\Phi_N\rangle$

Going from $|\Phi_n\rangle$ to $|\Phi_{n+1}\rangle$:

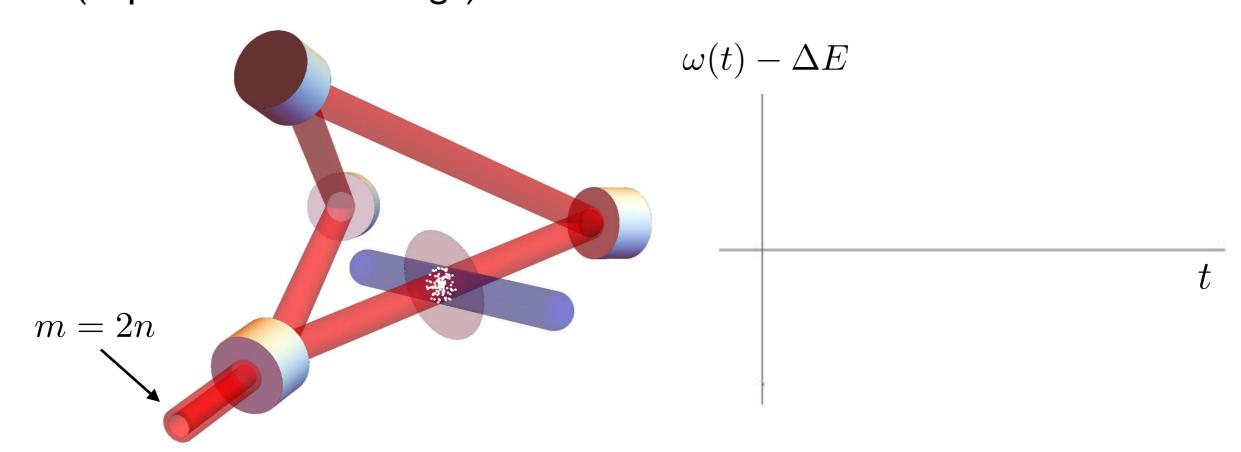
• Pump photons with angular momentum 2n : $\Delta L = L_{n+1} - L_n = 2n$ (Laguerre-Gauss laser beams: $r^{2n}e^{-r^2/2}e^{i2n\varphi}$)

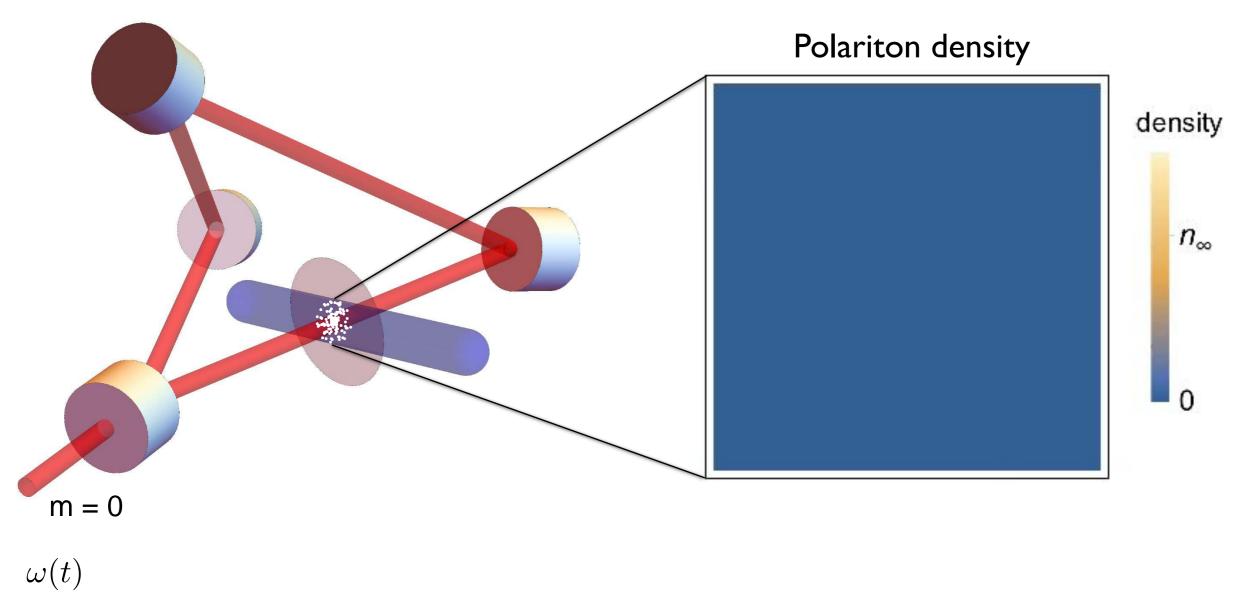


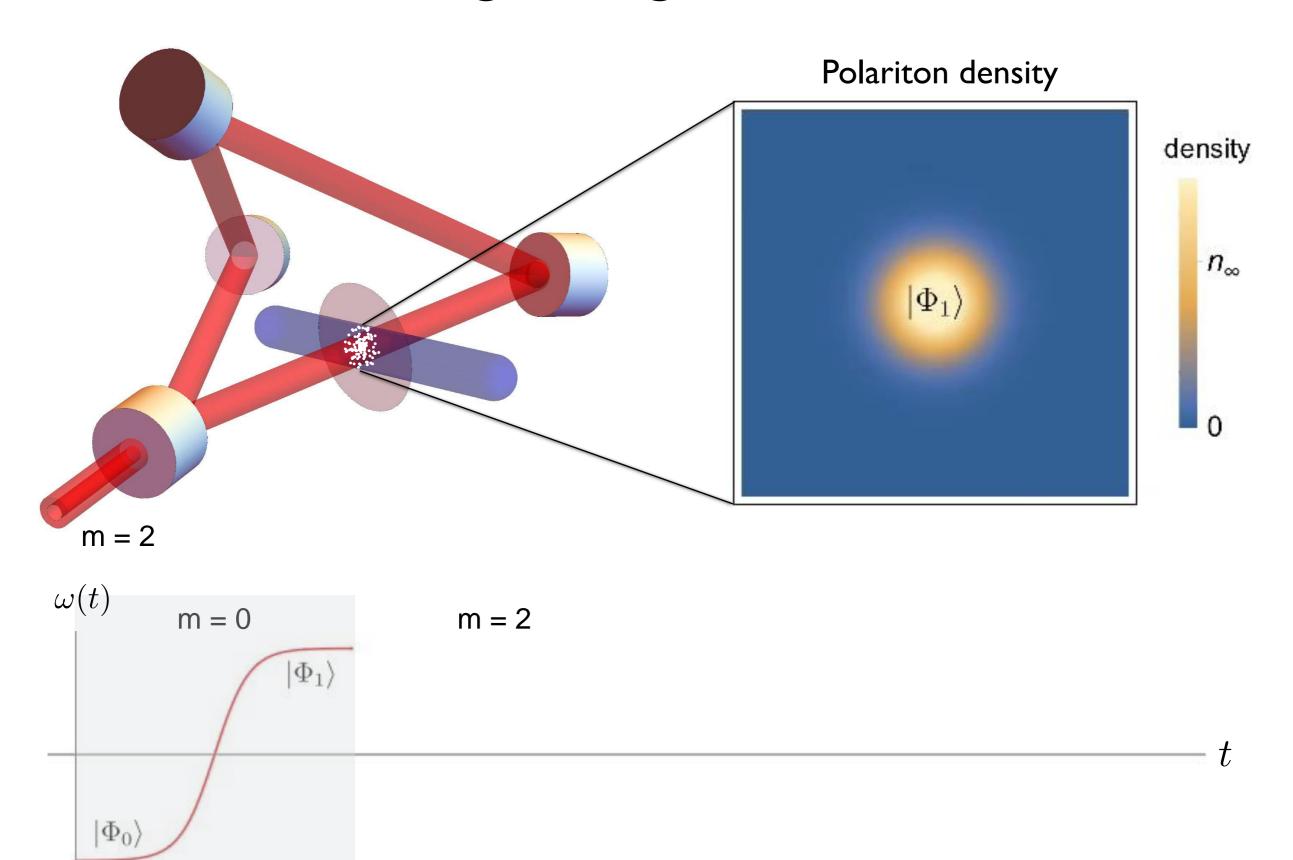
Idea: inject photons one-by-one such that $|\Phi_0\rangle \to |\Phi_1\rangle \to \dots |\Phi_N\rangle$

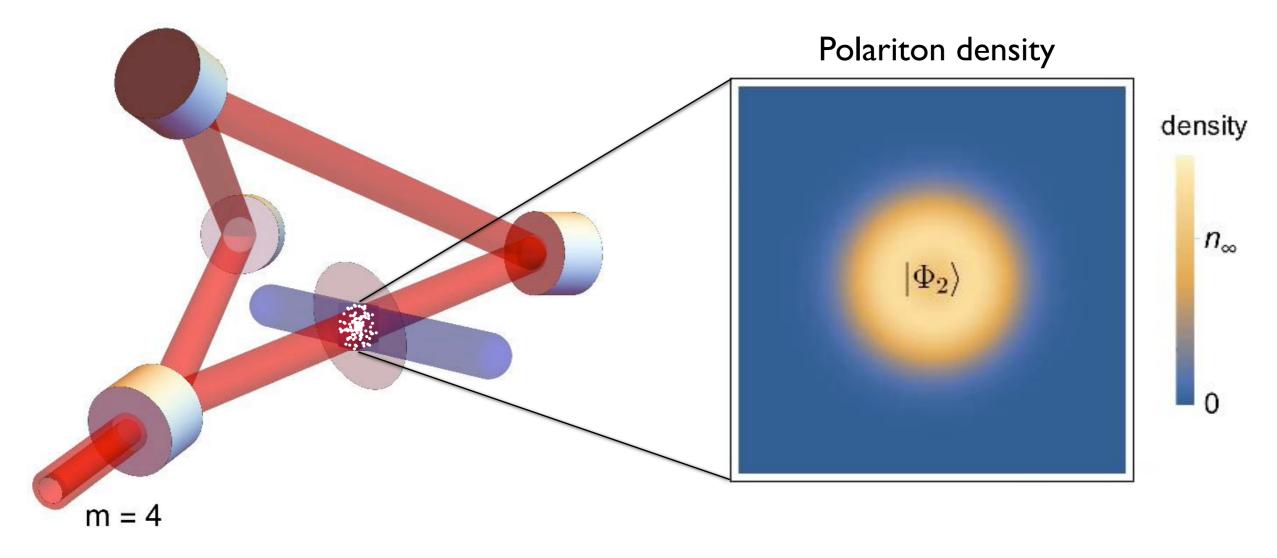
Going from $|\Phi_n\rangle$ to $|\Phi_{n+1}\rangle$:

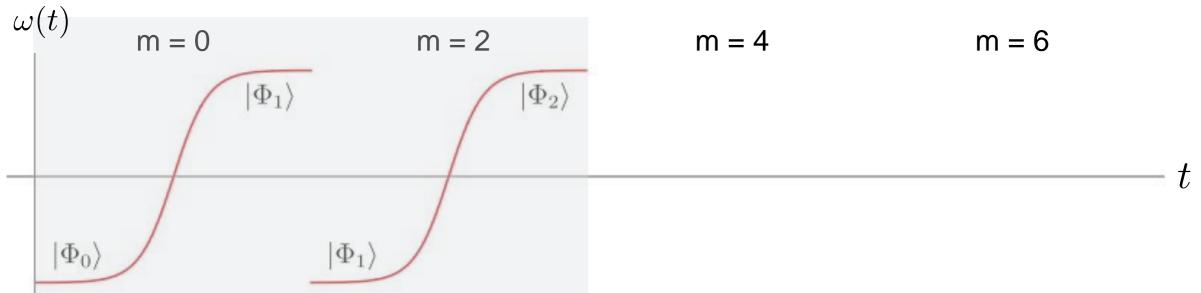
- Pump photons with angular momentum 2n : $\Delta L = L_{n+1} L_n = 2n$ (Laguerre-Gauss laser beams: $r^{2n}e^{-r^2/2}e^{i2n\varphi}$)
- Sweep frequency thru resonance : $\Delta E = E_{n+1} E_n = \omega_B + n\omega_T^2/\omega_B$ (Rapid Adiabatic Passage)









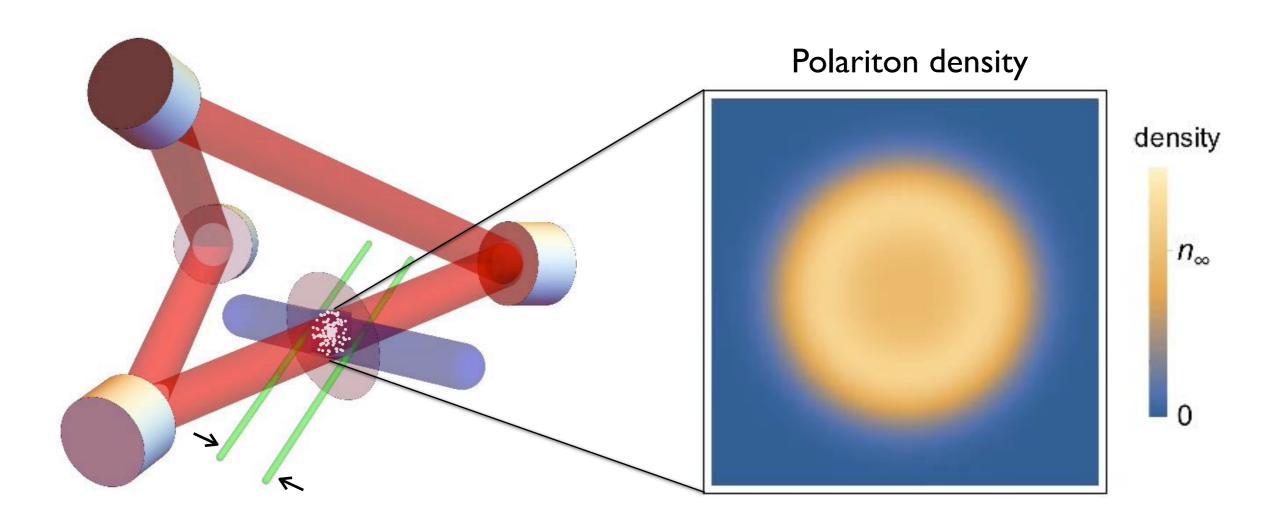


Creating Quasiholes

Idea: insert strong localized potentials adiabatically to bind holes

Potentials:
$$\hat{U}(t) = \pi l^2 U_0 \int d^2 r \left[\delta(\vec{r} - \vec{r}_0(t)) + \delta(\vec{r} + \vec{r}_0(t)) \right] \hat{\psi}^{\dagger}(\vec{r}) \hat{\psi}(\vec{r})$$

Quasiholes:
$$\Phi_N^{\text{oo}}(\{z_j\}) \propto \prod_{i=1}^N (z_i - z_0)(z_i + z_0) \Phi_N(\{z_j\})$$
 $[z_0 \equiv r_0 e^{i\phi_0}/l]$

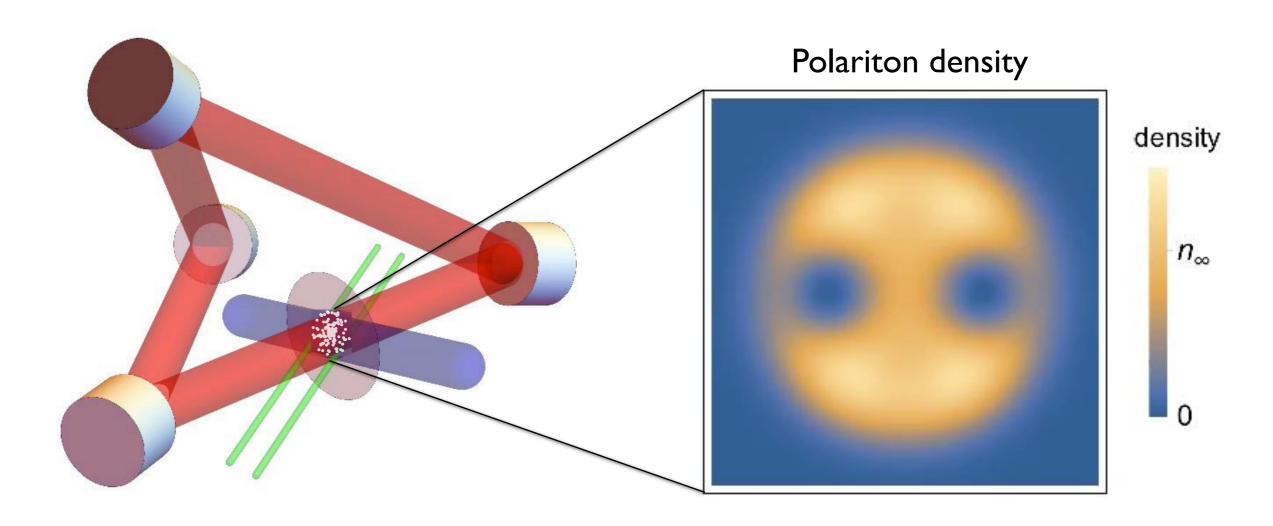


Braiding Quasiholes

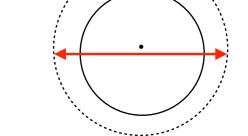
Idea: move the potentials to drag quasiholes around each other

Potentials:
$$\hat{U}(t) = \pi l^2 U_0 \int d^2r \left[\delta(\vec{r} - \vec{r}_0(t)) + \delta(\vec{r} + \vec{r}_0(t)) \right] \hat{\psi}^{\dagger}(\vec{r}) \hat{\psi}(\vec{r})$$

Quasiholes:
$$\Phi_N^{\text{oo}}(\{z_j\}) \propto \prod_{i=1}^N (z_i - z_0)(z_i + z_0) \Phi_N(\{z_j\})$$
 $[z_0 \equiv r_0 e^{i\phi_0}/l]$

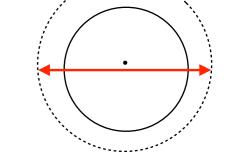


Idea: compare with a reference $|R\rangle$ which is unaffected by drives



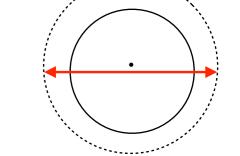
- Steps: I. Use $\pi/2$ -pulse to prepare $|0\rangle + |R\rangle$
 - $|0\rangle$: zero-polariton state, $|R\rangle$: one atom Rydberg excited
 - 2. Create Laughlin, create holes, braid holes, then repeat backwards $|0\rangle+|R\rangle\to e^{i\phi}|0\rangle+|R\rangle$
 - 3. Apply $\pi/2$ -pulse to recombine $|0\rangle$ and $|R\rangle$
 - 4. Read out ϕ by measuring ground-state occupation
 - 5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Idea: compare with a reference $|R\rangle$ which is unaffected by drives



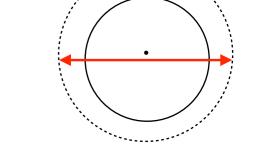
- Steps: I. Use $\pi/2$ -pulse to prepare $|0\rangle + |R\rangle$
 - $|0\rangle$: zero-polariton state, $|R\rangle$: one atom Rydberg excited
 - 2. Create Laughlin, create holes, braid holes, then repeat backwards $|0\rangle+|R\rangle\to e^{i\phi}|0\rangle+|R\rangle$
 - 3. Apply $\pi/2$ -pulse to recombine $|0\rangle$ and $|R\rangle$
 - 4. Read out ϕ by measuring ground-state occupation
 - 5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Idea: compare with a reference $|R\rangle$ which is unaffected by drives



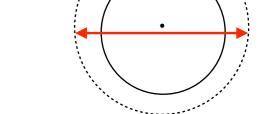
- Steps: I. Use $\pi/2$ -pulse to prepare $|0\rangle + |R\rangle$
 - $|0\rangle$: zero-polariton state, $|R\rangle$: one atom Rydberg excited
 - 2. Create Laughlin, create holes, braid holes, then repeat backwards $|0\rangle+|R\rangle\to e^{i\phi}|0\rangle+|R\rangle$
 - 3. Apply $\pi/2$ -pulse to recombine $|0\rangle$ and $|R\rangle$
 - 4. Read out ϕ by measuring ground-state occupation
 - 5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Idea: compare with a reference $|R\rangle$ which is unaffected by drives



- Steps: I. Use $\pi/2$ -pulse to prepare $|0\rangle + |R\rangle$
 - $|0\rangle$: zero-polariton state, $|R\rangle$: one atom Rydberg excited
 - 2. Create Laughlin, create holes, braid holes, then repeat backwards $|0\rangle+|R\rangle\to e^{i\phi}|0\rangle+|R\rangle$
 - 3. Apply $\pi/2$ -pulse to recombine $|0\rangle$ and $|R\rangle$
 - 4. Read out ϕ by measuring ground-state occupation
 - 5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Idea: compare with a reference $|R\rangle$ which is unaffected by drives



- Steps: I. Use $\pi/2$ -pulse to prepare $|0\rangle + |R\rangle$ $|0\rangle$: zero-polariton state, $|R\rangle$: one atom Rydberg excited
 - 2. Create Laughlin, create holes, braid holes, then repeat backwards $|0\rangle+|R\rangle\to e^{i\phi}|0\rangle+|R\rangle$
 - 3. Apply $\pi/2$ -pulse to recombine $|0\rangle$ and $|R\rangle$
 - 4. Read out ϕ by measuring ground-state occupation
 - 5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Idea: compare with a reference $|R\rangle$ which is unaffected by drives

(e.g., a Rydberg excitation with large interaction range)

$$\phi=\phi_d+\phi_g$$
 $\phi_g=\phi_{AB}+\phi_s$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow dynamical geometric Aharonov-Bohm statistical

Repeat experiment at different rates to separate ϕ_g from ϕ_d

5. Repeat under different experimental conditions to extract statistical phase ϕ_s from ϕ

Measuring statistical phase

Idea: compare geometric phases from two different experiments

Experiment I

Rotate a single quasihole by 2π

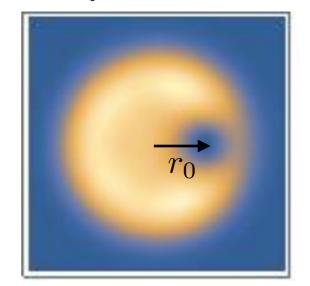
$$\phi_g^{\rm I} = \phi_1 \longrightarrow {\sf Aharonov\text{-Bohm}}$$

Experiment II

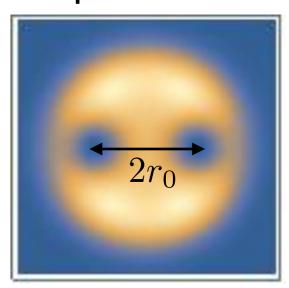
Rotate two quasiholes by π

$$\phi_g^{\rm II} = \phi_1 + \phi_s \longrightarrow \text{exchange}$$

Experiment I



Experiment II



Measuring statistical phase

Idea: compare geometric phases from two different experiments

Experiment I

Rotate a single quasihole by 2π

$$\phi_g^{\rm I} = \phi_1 \longrightarrow {\sf Aharonov-Bohm}$$

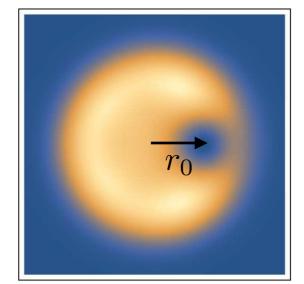
Experiment II

Rotate two quasiholes by π

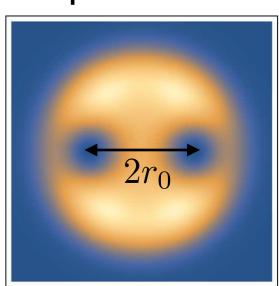
$$\phi_g^{\rm II} = \phi_1 + \phi_s \longrightarrow \text{exchange}$$

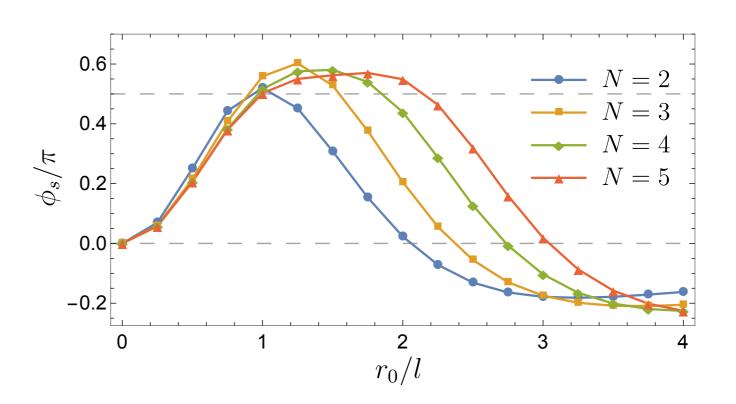
$$\implies \phi_s = \phi_g^{\rm II} - \phi_g^{\rm I}$$
 thermodynamic limit
$$\pi/2$$

Experiment I



Experiment II





Measuring statistical phase

Idea: compare geometric phases from two different experiments

Experiment I

Rotate a single quasihole by 2π

$$\phi_g^{\rm I} = \phi_1 \longrightarrow {\sf Aharonov\text{-Bohm}}$$

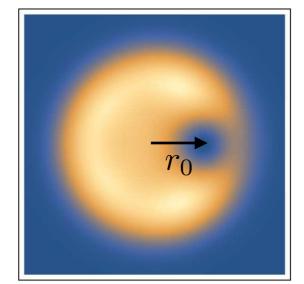
Experiment II

Rotate two quasiholes by π

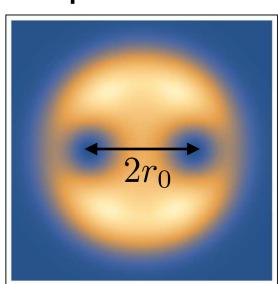
$$\phi_g^{\rm II} = \phi_1 + \phi_s \longrightarrow \text{exchange}$$

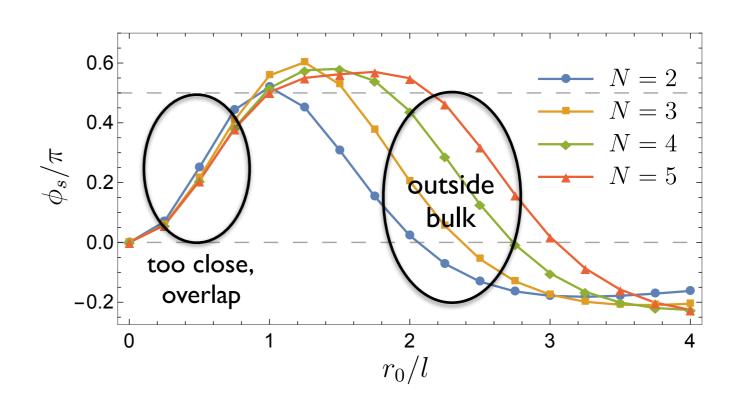
$$\implies \phi_s = \phi_g^{\rm II} - \phi_g^{\rm I}$$
 thermodynamic limit
$$\pi/2$$

Experiment I



Experiment II





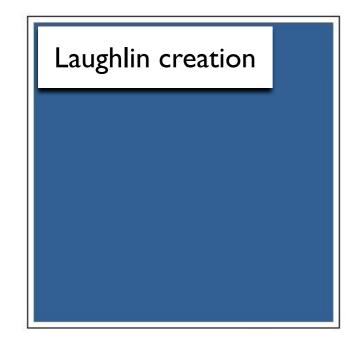
Adiabaticity and Coherence

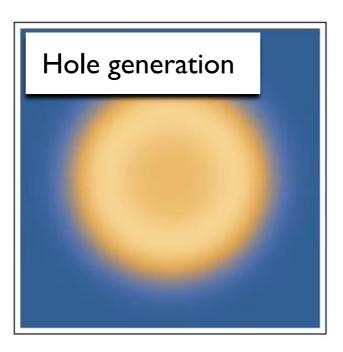
- I. Sweeps must be slow enough to prevent unwanted excitations
- 2. Sweeps must be fast enough to prevent polariton loss
- Adiabaticity: rates limited by excitation gap ~ V_0 (t >1/ V_0) (Laughlin creation most time consuming)
- Polariton loss set by decay rate γ (t $\ll 1/\gamma$)

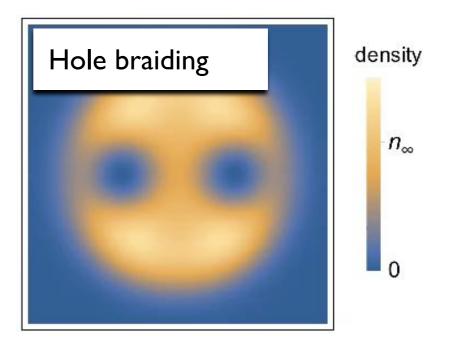
requires V_0 much bigger than γ

(more precise estimates on next slide)

Examples of non-adiabatic sweeps (no loss):

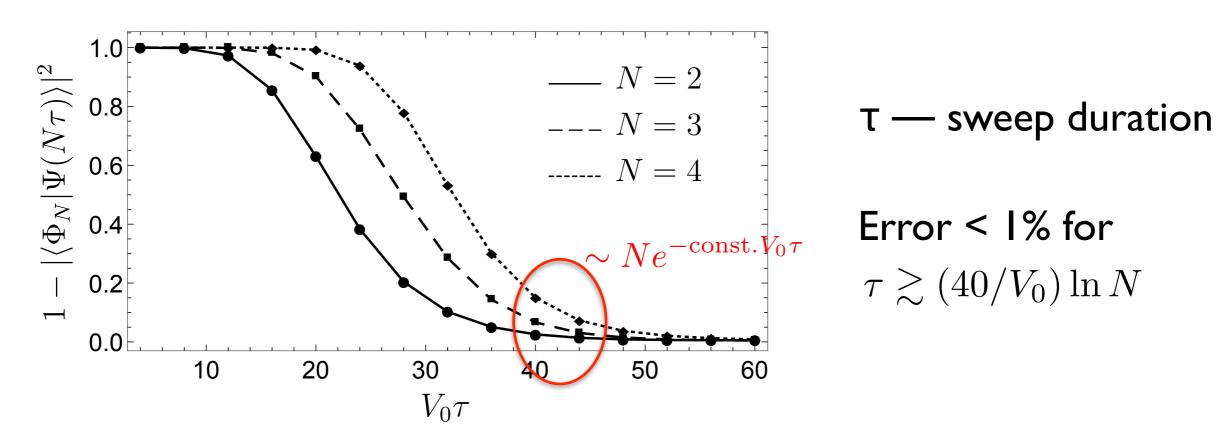






Adiabaticity and Coherence

Cumulative error during Laughlin creation:



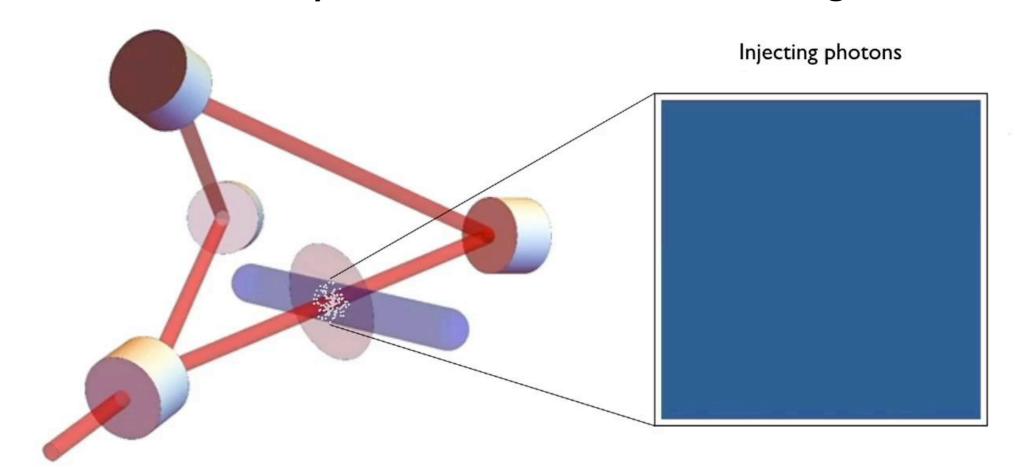
Net polariton loss:
$$N_{\rm loss} \approx \sum_{n=0}^{N-1} (n\gamma)(\tau) \approx N^2 \gamma \tau/2$$
 $N_{\rm loss} \ll 1 \implies V_0/\gamma \gg 10 N^2 \ln N$

Big improvement over existing protocols (less demanding, high fidelity)

Still very hard to achieve (current experiments have $V_0/\gamma \sim 50$)

Summary

- Use rapid adiabatic passage to create Laughlin state
- Move pinning potentials to create and braid quasiholes
- · Interferometrically measure fractional exchange statistics



- Adiabaticity and coherence require $V_0/\gamma\gg 10N^2\ln N$
- Realize few-particle Laughlin states and perform externally controlled anyon braiding

Thank you

In Recognition of Exemplary Homework

Solutions

Shovan Dutta

Conferred by Ant. Ve.7 Elsev