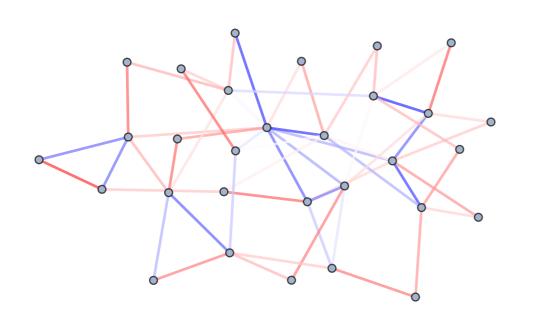
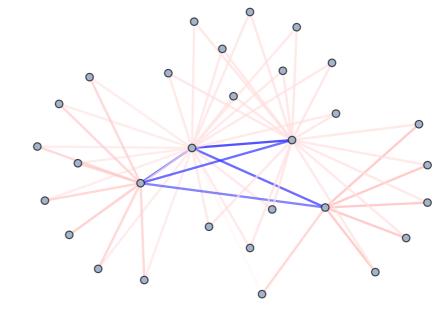
Frustrated magnetism on complex networks: What sets the total spin

Shovan Dutta

Raman Research Institute

Preethi G IISER TVM



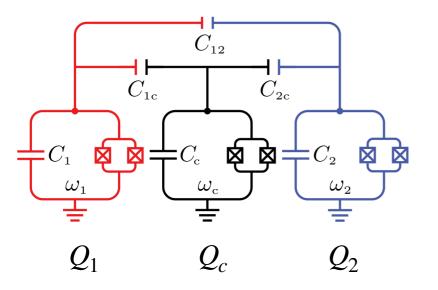


Why networks?

- Why limit to regular lattices?
 Networks can host new many-body physics
- Novel classical phenomena, e.g., explosive synchronization
 Network topology controls disease spreading
 Small-world property, community structure

Strogatz, Nature 410, 268 (2001) D'Souza *et al.*, Adv. Phys. 68, 123 (2019) Sousa da Mata, Braz. J. Phys. 50, 658 (2020)

Possible to synthesize arbitrary network of quantum spins



Superconducting circuits
Lamata et al., Adv. Phys. X 3, 1457981 (2018)

Trapped ions
Korenblit et al., New J. Phys. 14 095024 (2012)

Rydberg atoms
Nguyen et al., PRX 8, 011032 (2018)

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17

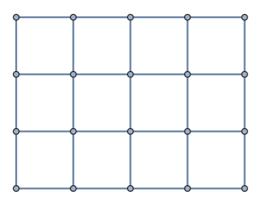
Knolle, Moessner, '18

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17 Knolle, Moessner, '18

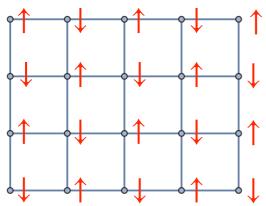
Regular bipartite



Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17 Knolle, Moessner, '18



$$S_{\text{total}} = 0$$

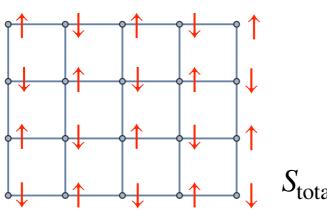
Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

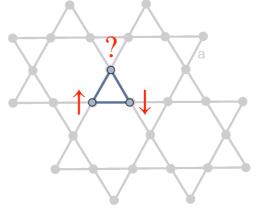
Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17

Knolle, Moessner, '18

Regular bipartite



Regular nonbipartite



Frustrated

Networks enable variable degrees of frustration — ingredient of spin liquid

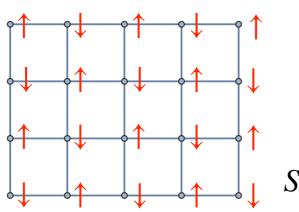
Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16

Zhou, Kanoda, Ng, RMP, '17

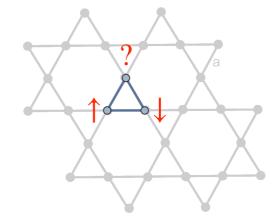
Knolle, Moessner, '18

Regular bipartite



$$S_{\text{total}} = 0$$

Regular nonbipartite



Frustrated

$$S_{\text{total}} = 0$$

Spin liquid

Networks enable variable degrees of frustration — ingredient of spin liquid

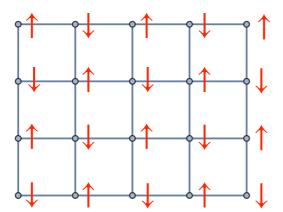
Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16

Zhou, Kanoda, Ng, RMP, '17

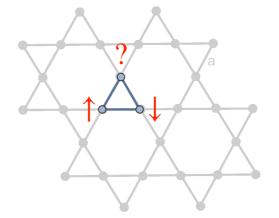
Knolle, Moessner, '18

Regular bipartite



$$S_{\text{total}} = 0$$

Regular nonbipartite

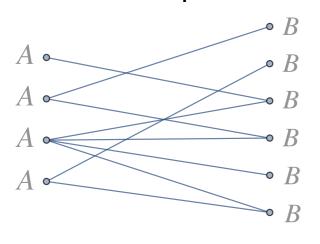


Frustrated

$$S_{\text{total}} = 0$$

Spin liquid

General bipartite



$$S_{\text{total}} = \frac{|N_A - N_B|}{2}$$

Networks enable variable degrees of frustration — ingredient of spin liquid

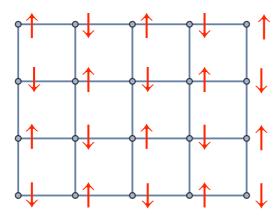
Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16

Zhou, Kanoda, Ng, RMP, '17

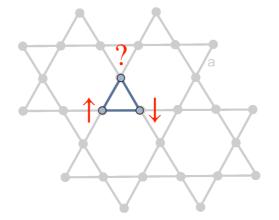
Knolle, Moessner, '18

Regular bipartite



$$S_{\text{total}} = 0$$

Regular nonbipartite

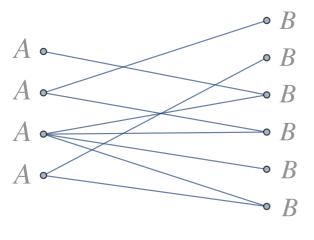


Frustrated

$$S_{\text{total}} = 0$$

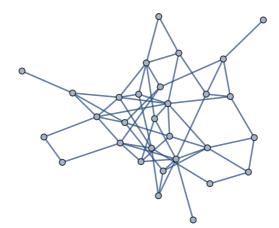
Spin liquid

General bipartite



$$S_{\text{total}} = \frac{|N_A - N_B|}{2}$$

General nonbipartite



Frustrated

$$S_{\text{total}} = ?$$

Ordering?

Networks enable variable degrees of frustration — ingredient of spin liquid

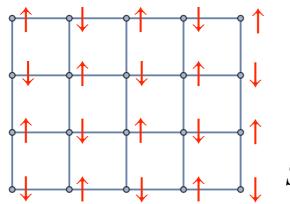
Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16

Zhou, Kanoda, Ng, RMP, '17

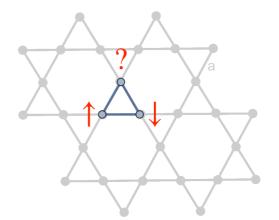
Knolle, Moessner, '18

Regular bipartite



$$S_{\text{total}} = 0$$

Regular nonbipartite

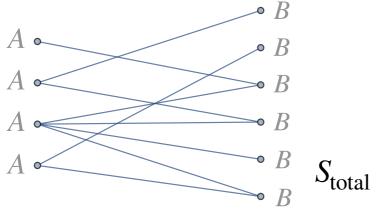


Frustrated

$$S_{\text{total}} = 0$$

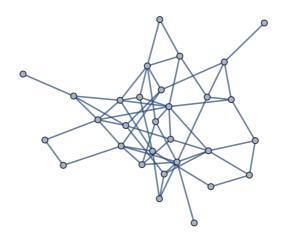
Spin liquid

General bipartite



$$S_{\text{total}} = \frac{|N_A - N_B|}{2}$$

General nonbipartite



Frustrated

 $S_{\text{total}} = ?$

Ordering?

Q: How does network topology determine magnetic order? Here: What sets S_{total} ?

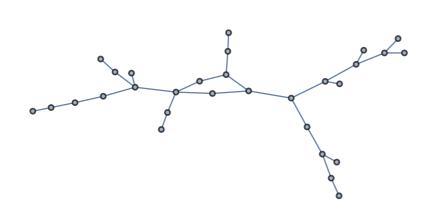
Random graphs

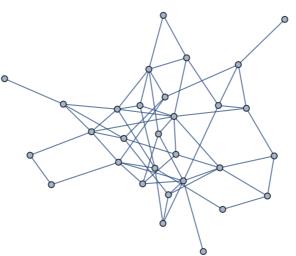
Random network of N spins & N_e bonds — generically nonbipartite

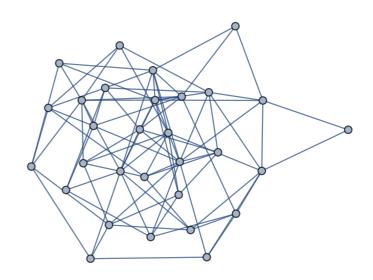
$$N = 30, N_e = 30$$

$$N = 30, N_e = 60$$

$$N = 30, N_e = 90$$





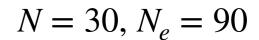


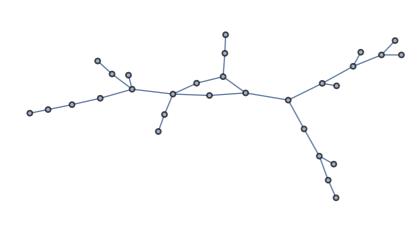
Avg # of neighbors (degree) $\bar{k}=2N_e/N=2,\,4,\,6$

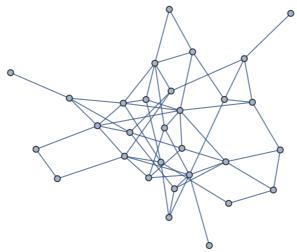
Random network of N spins & N_e bonds — generically nonbipartite

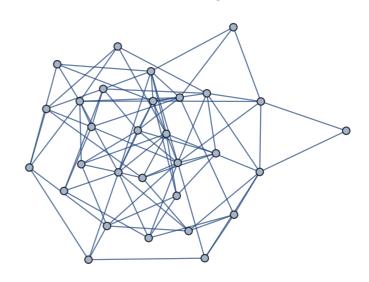
$$N = 30, N_e = 30$$

$$N = 30, N_e = 60$$



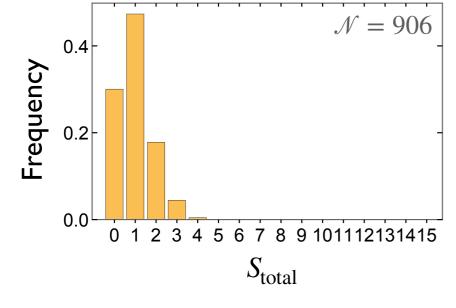


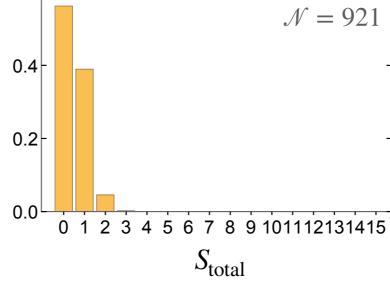


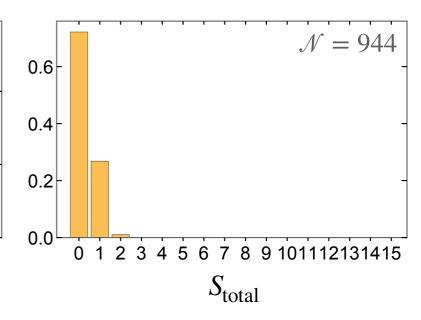


Avg # of neighbors (degree) $\bar{k}=2N_e/N=2,\,4,\,6$

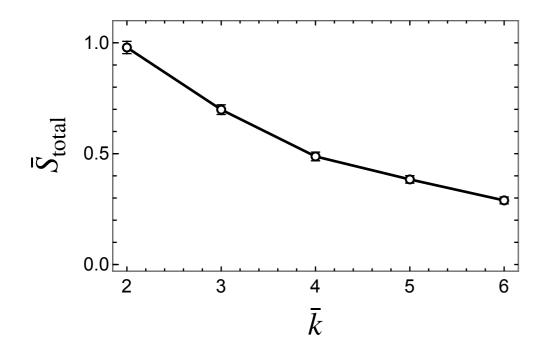
 $S_{
m total}$ small — falls with increasing $ar{k}$:





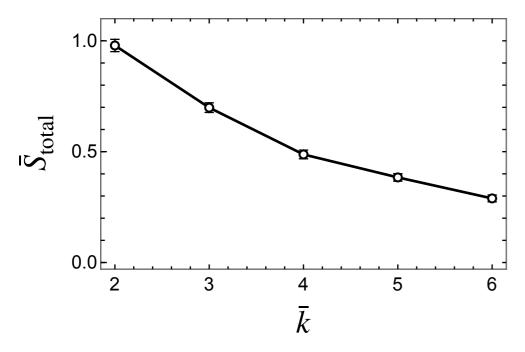


Random network of N spins & N_e bonds — generically nonbipartite



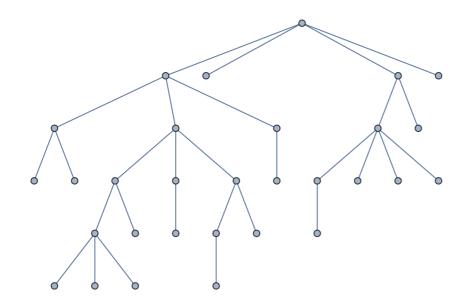
Magnetization falls with more neighbors

Random network of N spins & N_e bonds — generically nonbipartite

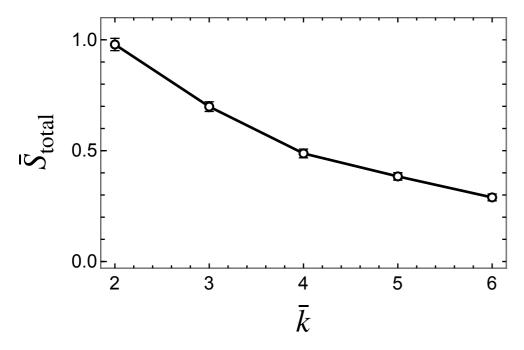


Magnetization falls with more neighbors

$$N_e^{\min} = N - 1$$

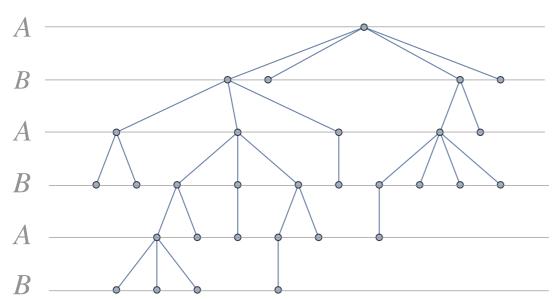


Random network of N spins & N_e bonds — generically nonbipartite



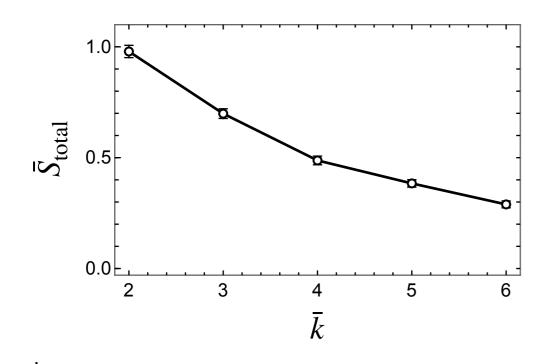
Magnetization falls with more neighbors

$$N_e^{\min} = N - 1$$



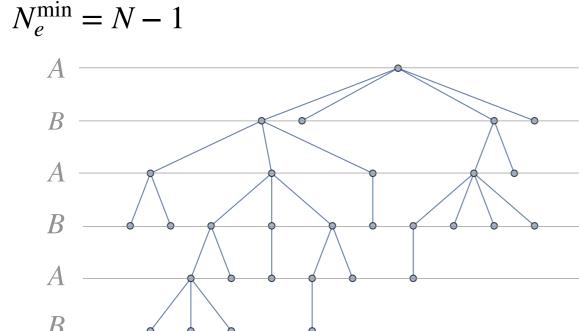
$$S_{\text{total}} = |N_A - N_B|/2 \sim \sqrt{N}$$

Random network of N spins & N_e bonds — generically nonbipartite



Magnetization falls with more neighbors

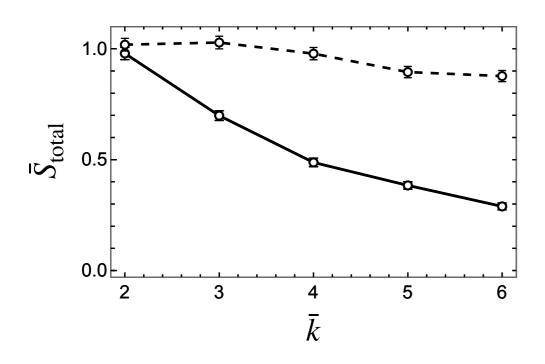
 $N_{e}^{\text{max}} = N(N-1)/2$



$$S_{\text{total}} = |N_A - N_B|/2 \sim \sqrt{N}$$

$$S_{\text{total}} = 0$$

Random network of N spins & N_e bonds — generically nonbipartite



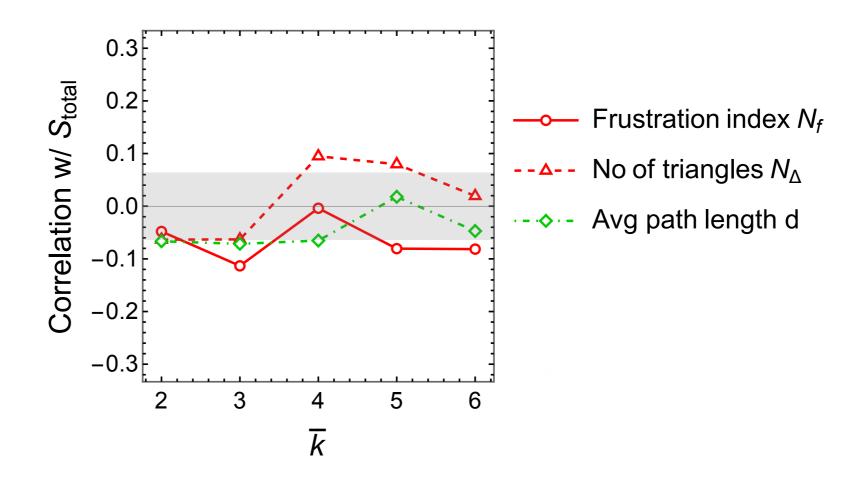
Magnetization falls with more neighbors

- → - Classical Ising spin glass — "max-cut"

 $N_{\rho}^{\text{max}} = N(N-1)/2$

 $S_{\text{total}} = 0$

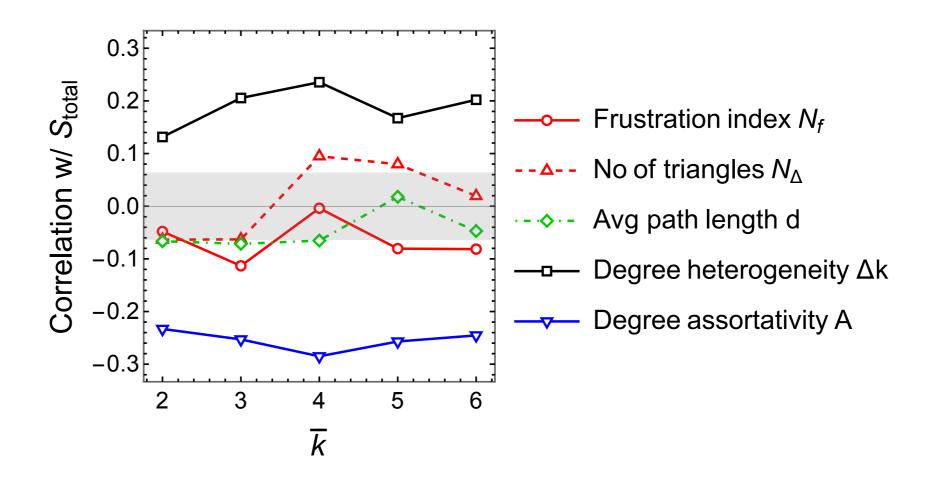
Random (connected) graphs — correlations



 N_f : number of bonds to cut to make bipartite

Weak correlation w/ frustration

Random (connected) graphs — correlations



 N_f : number of bonds to cut to make bipartite

 $A \in [-1,1]$: +ve \Longrightarrow high-degree nodes connect to high-degree nodes (& vice versa)

Newman, PRE 67, 026126 (2003)

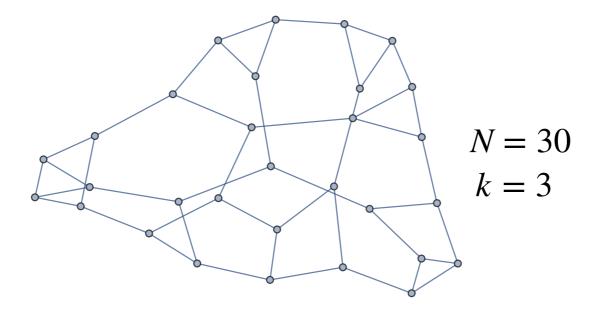
Weak correlation w/ frustration

Strong correlation w/ heterogeneity & assortativity

Heterogeneity

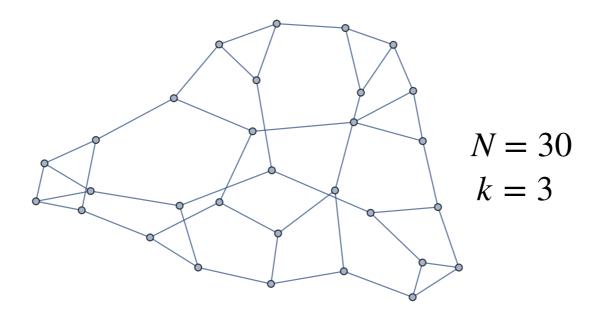
No heterogeneity: Random regular graphs

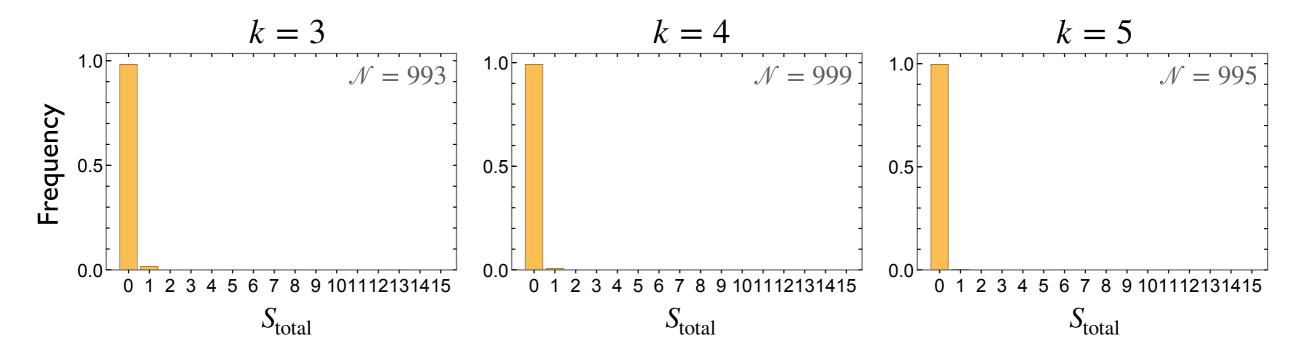
Every spin has k neighbors



No heterogeneity: Random regular graphs

Every spin has k neighbors

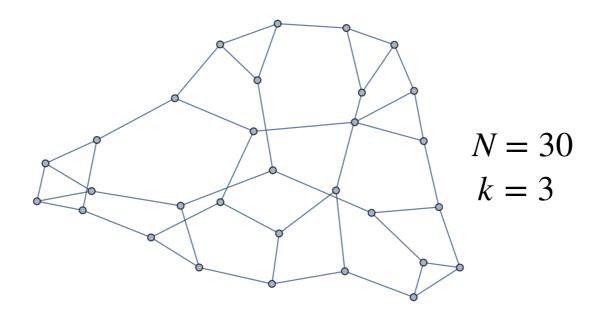


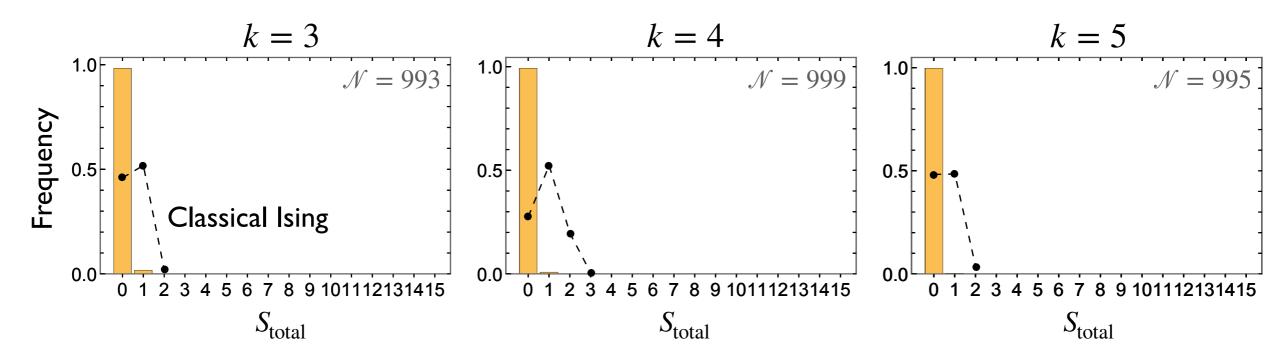


 \Longrightarrow Nonzero S_{total} requires spread in degree (# of neighbors)

No heterogeneity: Random regular graphs

Every spin has k neighbors





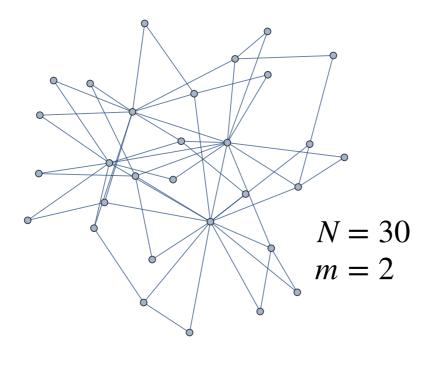
 \Longrightarrow Nonzero S_{total} requires spread in degree (# of neighbors)

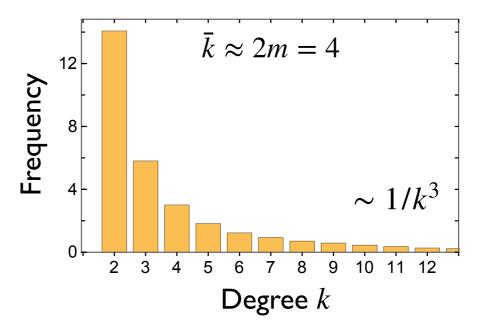
Power-law degree distribution

Power-law degree distribution

Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$

RMP 74, 47 (2002)

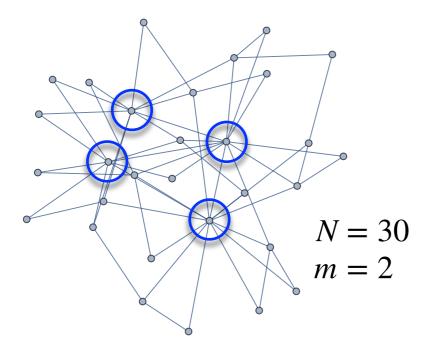


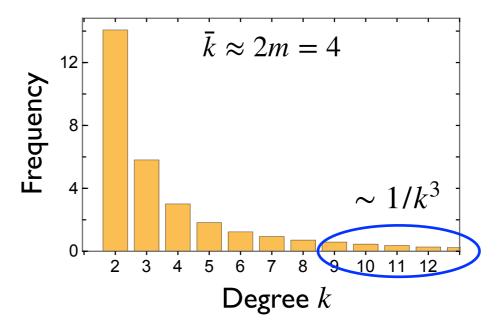


Power-law degree distribution \Longrightarrow Hubs

Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$

RMP 74, 47 (2002)

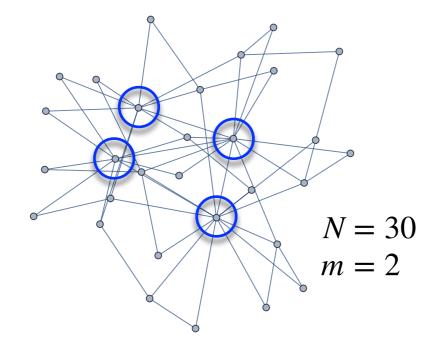


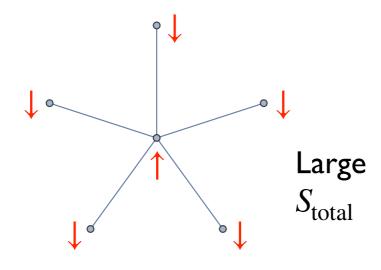


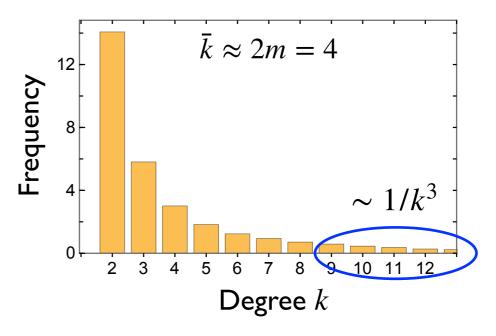
Power-law degree distribution \Longrightarrow Hubs

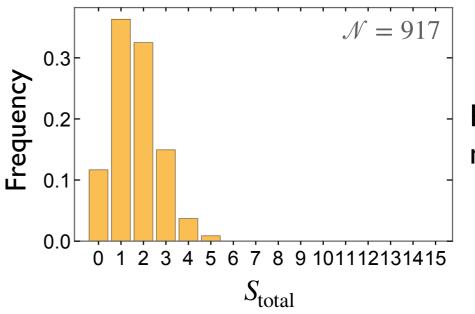
Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$

RMP 74, 47 (2002)



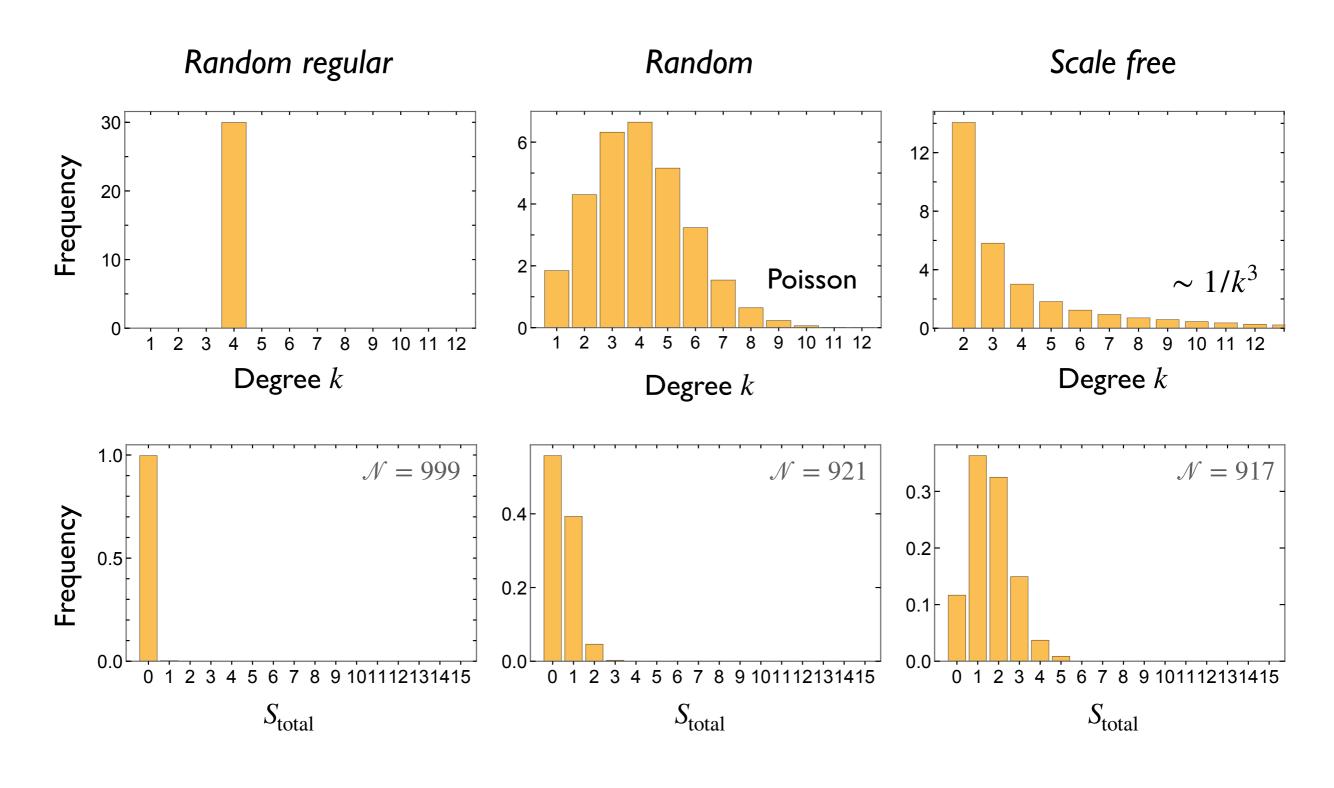






Enhanced magnetization

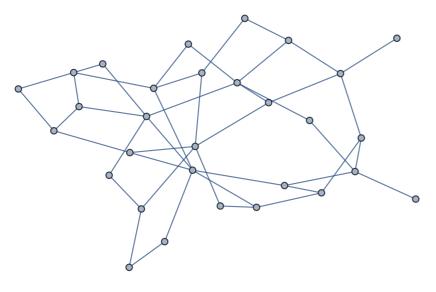
Summary: Magnetization grows w/ heterogeneity



Results for: N = 30, $\bar{k} = 4$

Frustration level

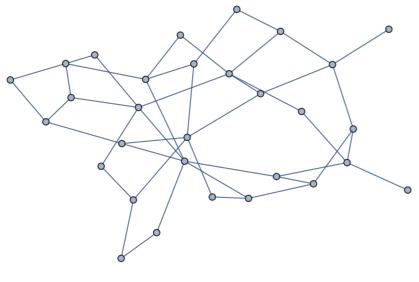
Remove all triangles



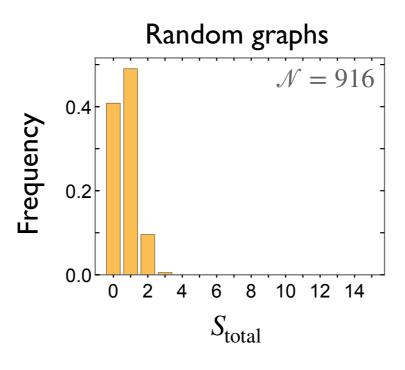
$$N = 30, N_e = 45, N_{\Delta} = 0$$

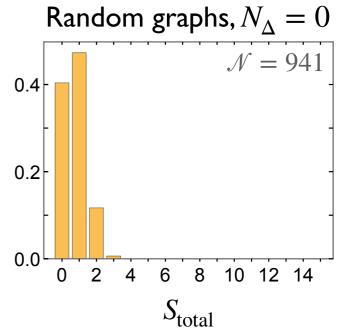
Remove all triangles \implies Spin distribution unaffected

Bayati, Montanari, Saberi, arXiv:0811.2853



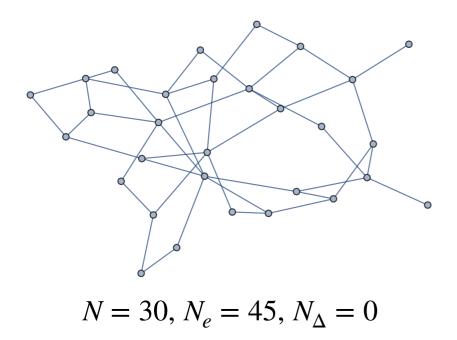
$$N = 30, N_e = 45, N_{\Delta} = 0$$

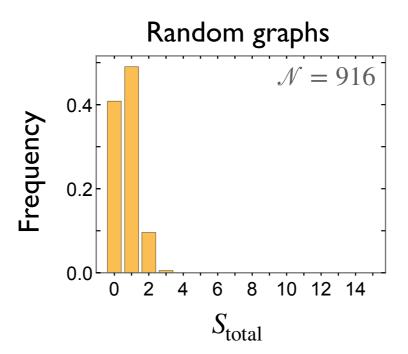


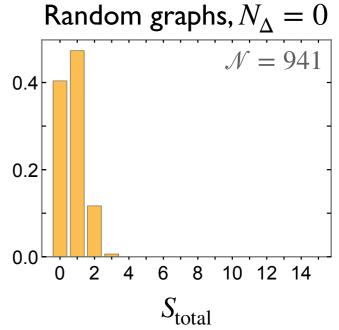


Remove all triangles \implies Spin distribution unaffected

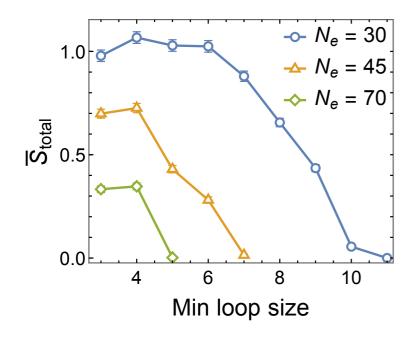
Bayati, Montanari, Saberi, arXiv:0811.2853





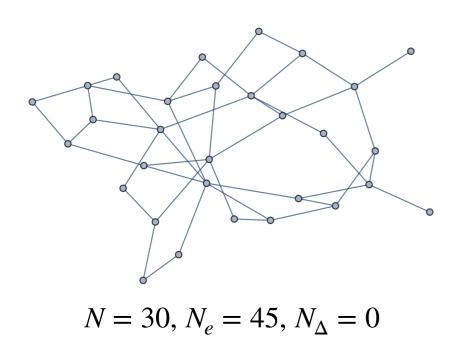


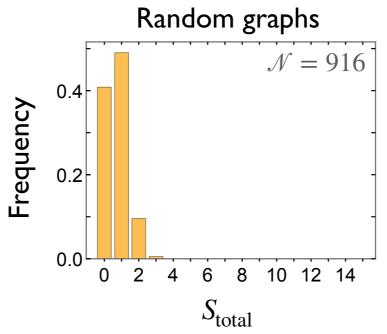
Remove short loops

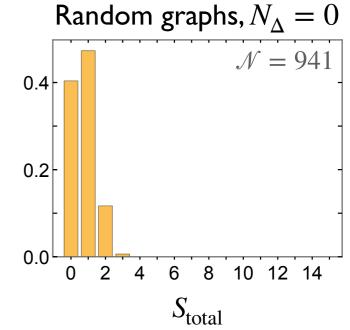


Remove all triangles \implies Spin distribution unaffected

Bayati, Montanari, Saberi, arXiv:0811.2853

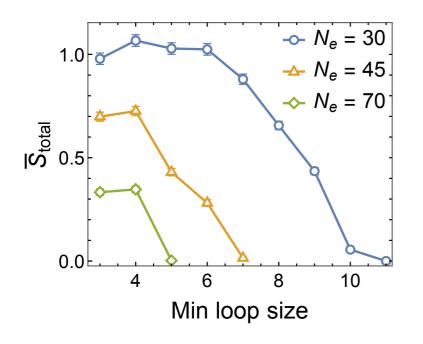


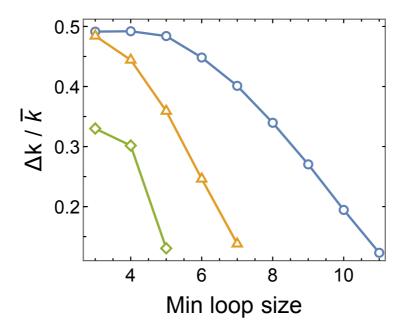




Remove short loops

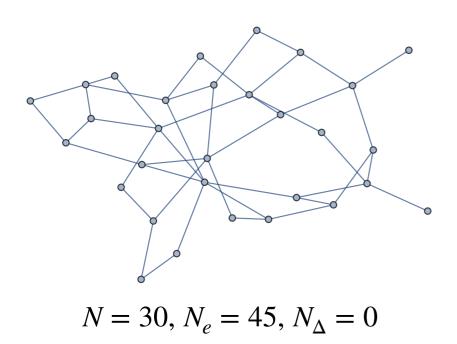
→ Magnetization follows heterogeneity

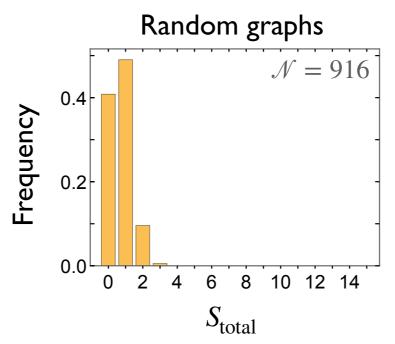


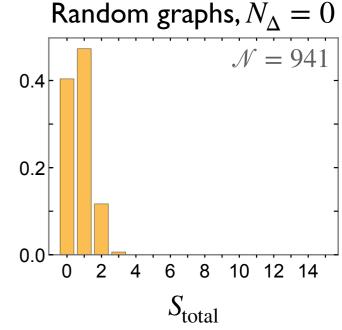


Remove all triangles \implies Spin distribution unaffected

Bayati, Montanari, Saberi, arXiv:0811.2853

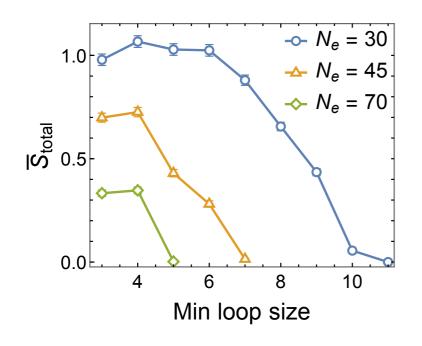


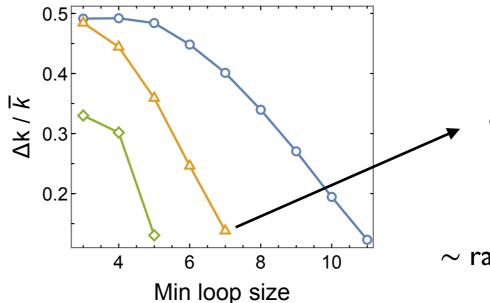


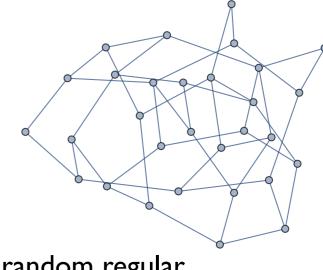


Remove short loops

→ Magnetization follows heterogeneity







Tune N_{Δ} without changing degree distribution ($\sim 1/k^3$)

Holme and Kim, PRE 65, 026107 (2002)

Tune N_{Δ} without changing degree distribution ($\sim 1/k^3$)

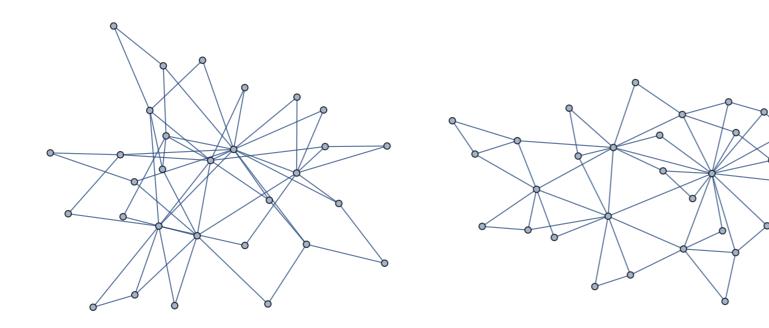
Holme and Kim, PRE 65, 026107 (2002)

- (I) Connect to existing node i with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)

Tune N_{Δ} without changing degree distribution ($\sim 1/k^3$)

Holme and Kim, PRE 65, 026107 (2002)

- (I) Connect to existing node i with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)



Fewer triangles

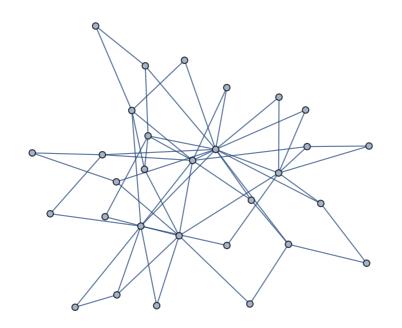
More triangles

Tune N_{Δ} without changing degree distribution ($\sim 1/k^3$)

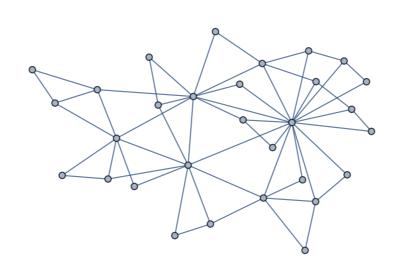
Holme and Kim, PRE 65, 026107 (2002)

 \Longrightarrow Weak variation of S_{total}

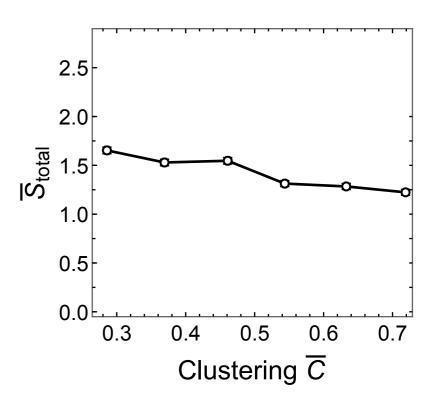
- (I) Connect to existing node i with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)



Fewer triangles



More triangles

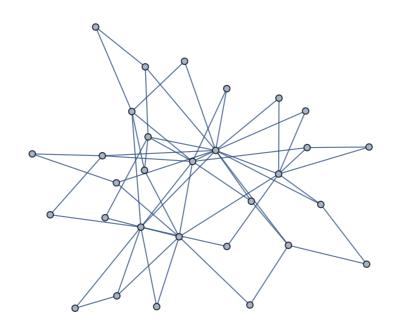


Tune N_{Δ} without changing degree distribution ($\sim 1/k^3$)

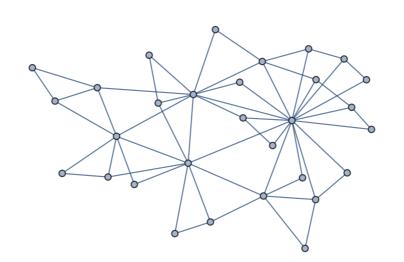
Holme and Kim, PRE 65, 026107 (2002)

 \Longrightarrow Weak variation of S_{total}

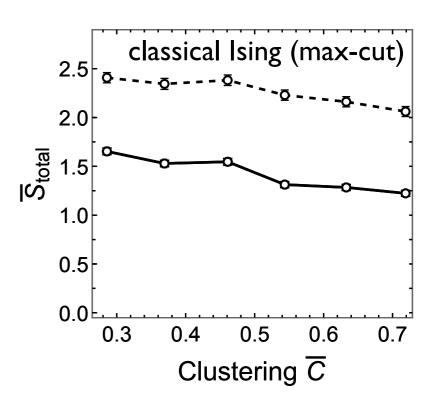
- (I) Connect to existing node i with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)



Fewer triangles



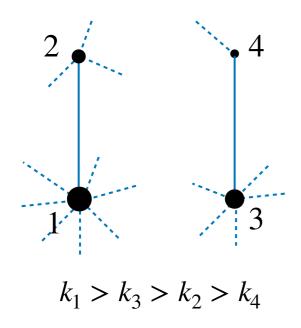
More triangles



Assortativity

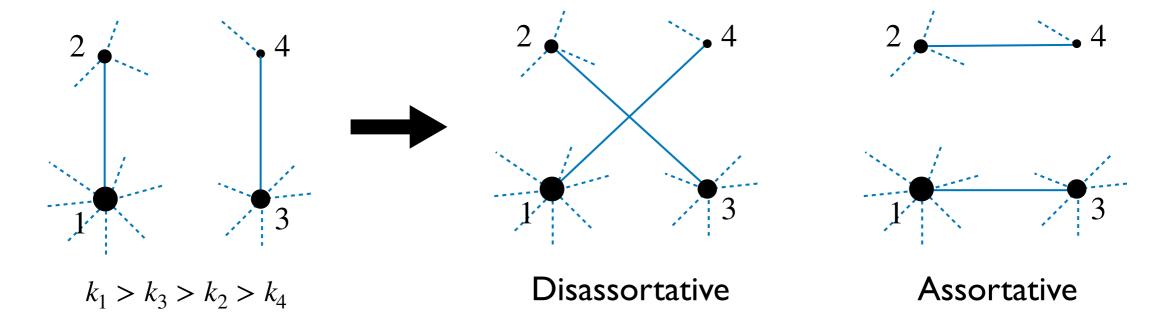
Degree-preserving rewiring

Van Mieghem *et al*, EPJ-B 76, 643 (2010)



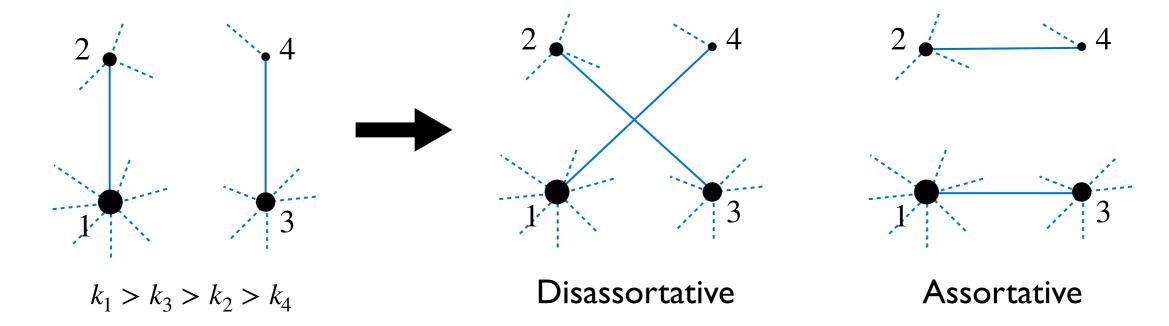
Degree-preserving rewiring

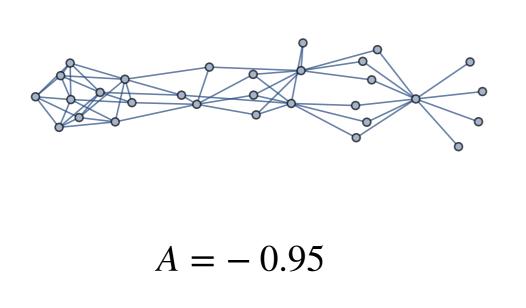
Van Mieghem et al, EPJ-B 76, 643 (2010)

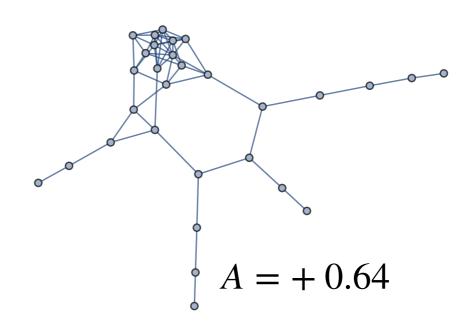


Degree-preserving rewiring

Van Mieghem et al, EPJ-B 76, 643 (2010)

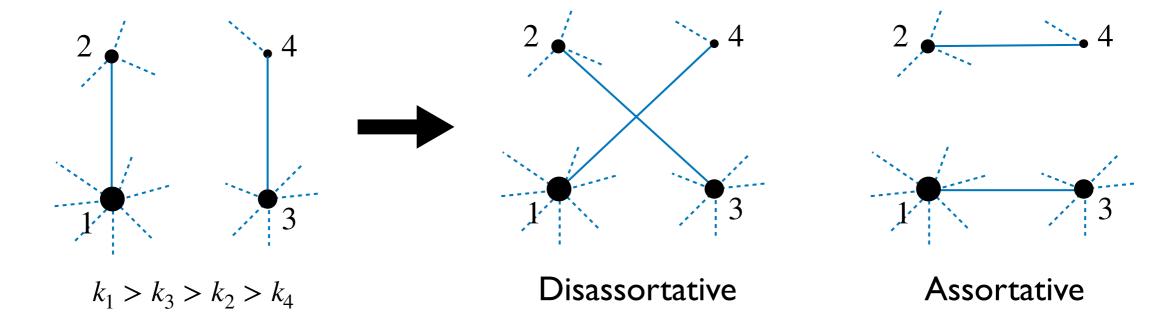


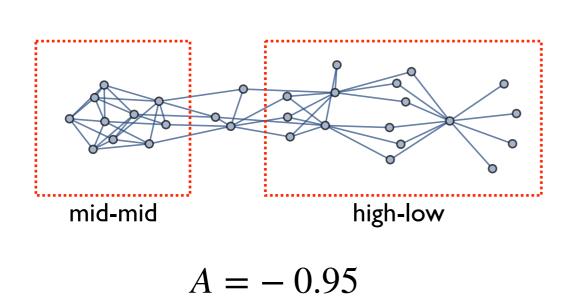


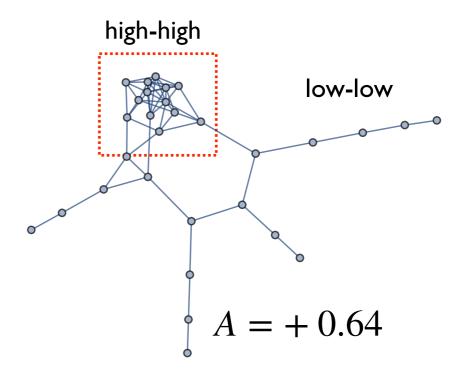


Degree-preserving rewiring

Van Mieghem et al, EPJ-B 76, 643 (2010)

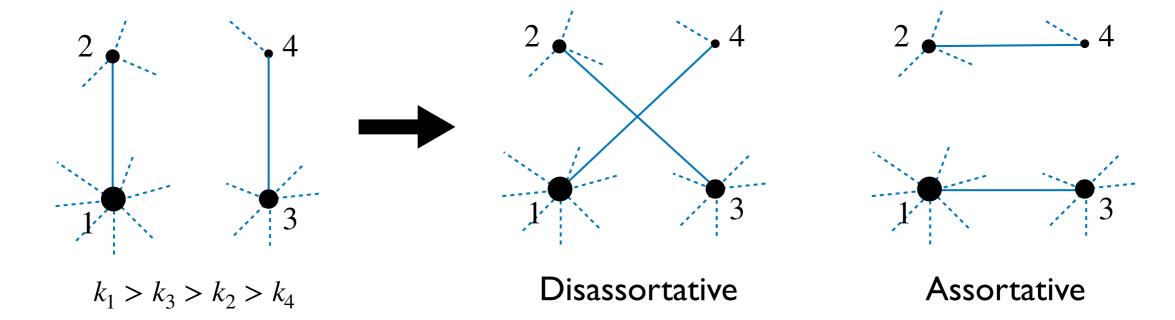


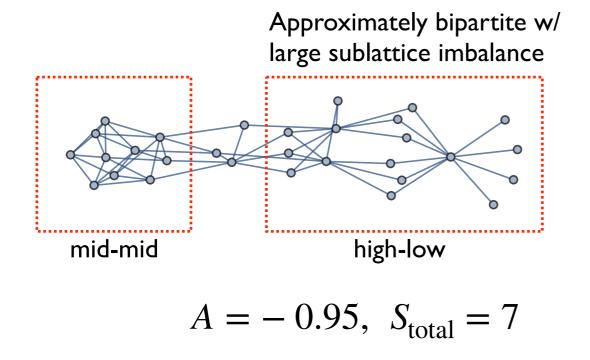


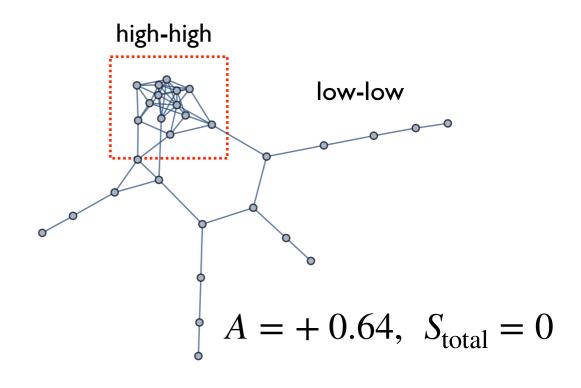


Degree-preserving rewiring

Van Mieghem *et al*, EPJ-B 76, 643 (2010)



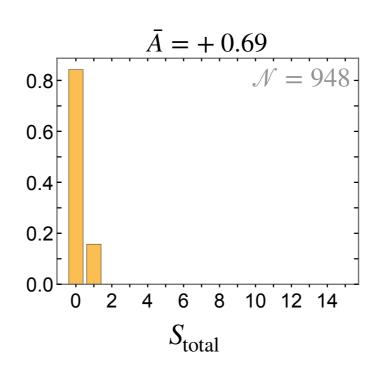


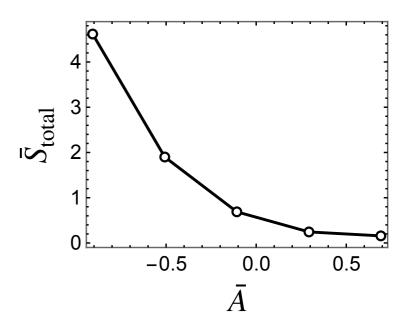


Magnetization falls w/ assortativity

$\bar{A} = -0.91$ N = 9960.4 Frequency 0.2 0.0 2 8 10 12 14 6 0 4 S_{total}

Most assortative

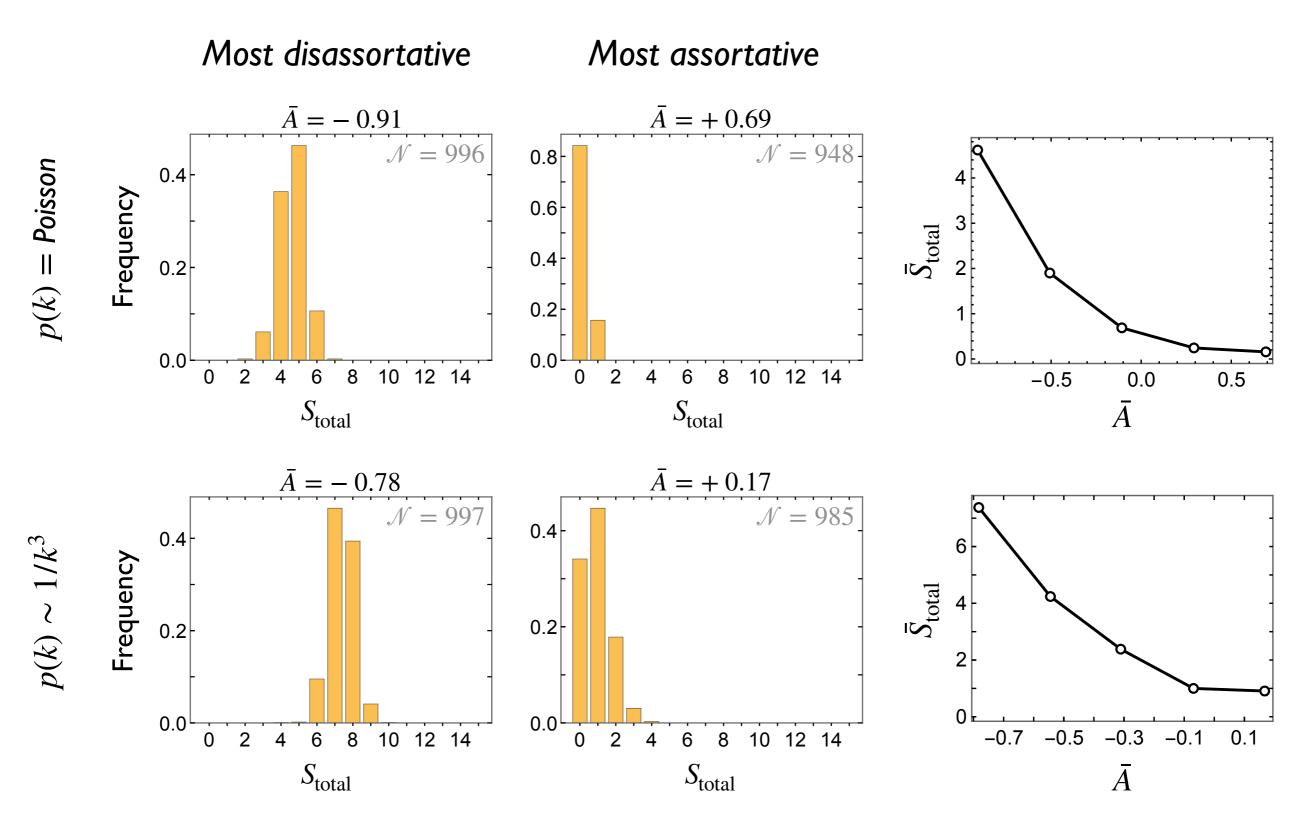




Results for: N = 30, $\bar{k} = 4$

p(k) = Poisson

Magnetization falls w/ assortativity



Results for: N = 30, $\bar{k} = 4$

Putting together: Tunable spin distribution

Parameters: N (no of spins), m ($\approx \bar{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

Parameters: N (no of spins), m ($\approx \bar{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

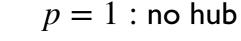
- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat *m* times

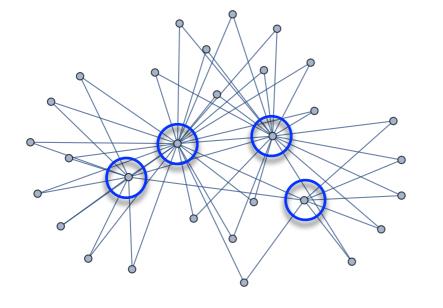
Parameters: N (no of spins), m ($\approx \bar{k}/2$), p (probability)

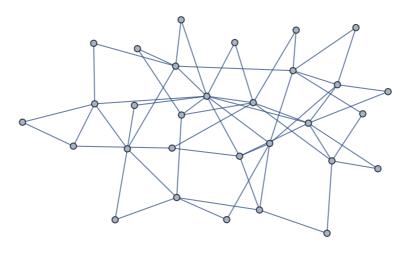
Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat *m* times

$$p = 0$$
: embedded hubs







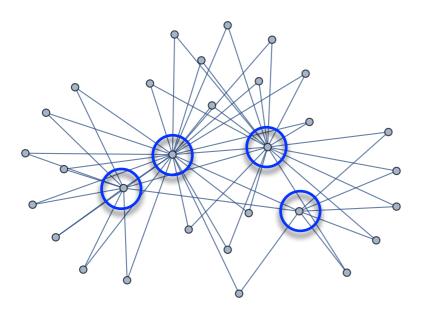
$$N = 30, m = 2$$

Parameters: N (no of spins), m ($\approx \bar{k}/2$), p (probability)

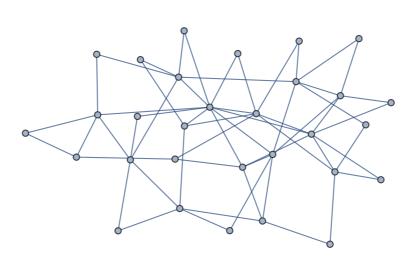
Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat *m* times

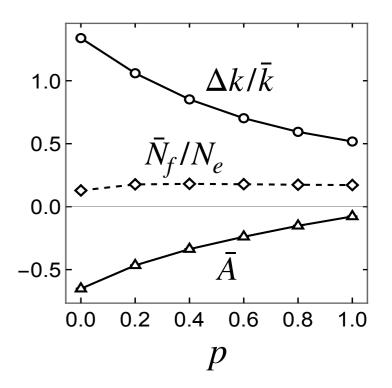
p = 0: embedded hubs



p = 1: no hub

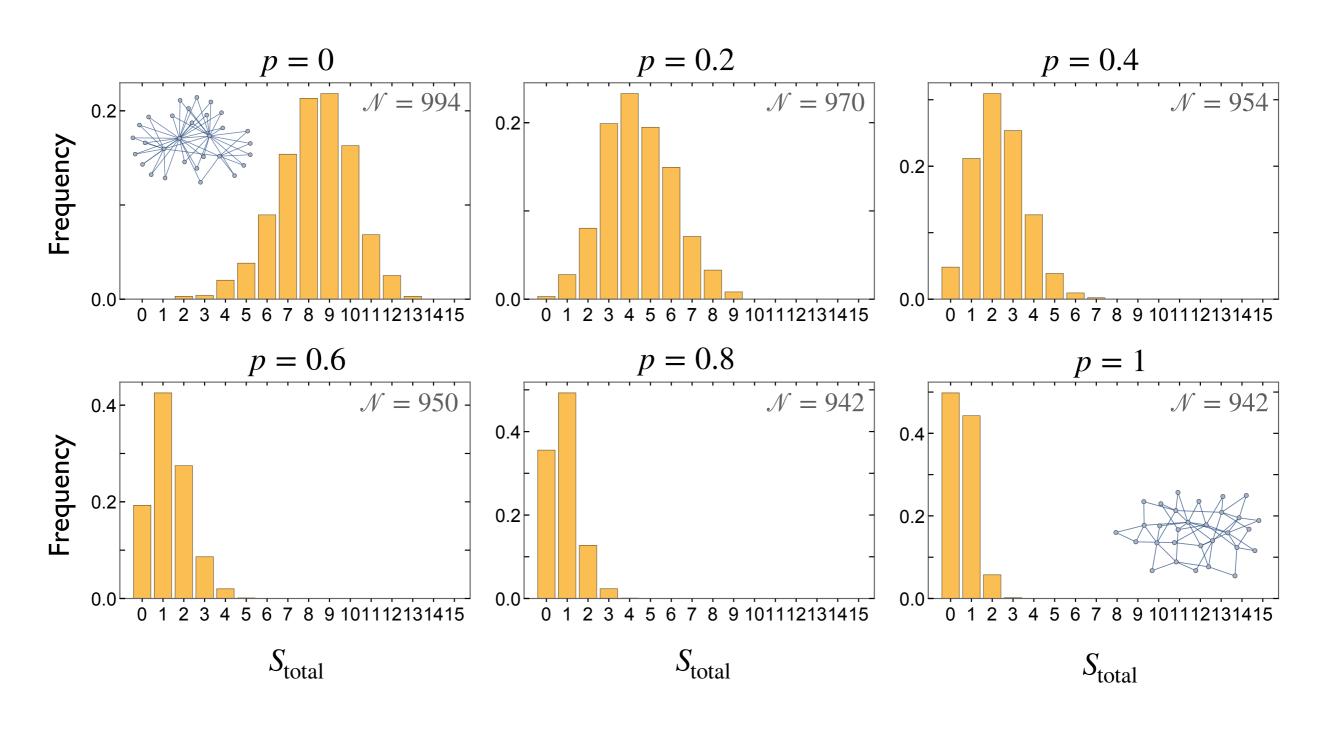


Heterogeneity + Assortativity



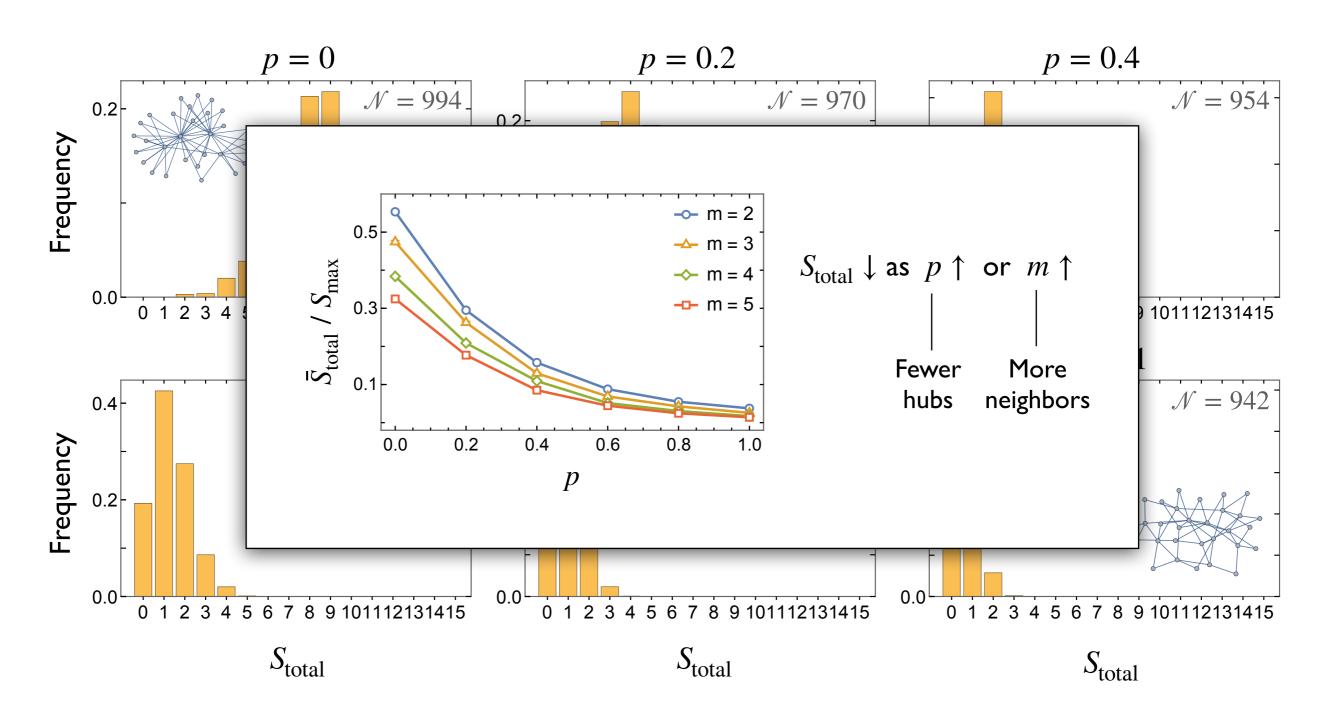
$$N = 30, m = 2$$

Tunable spin distribution:

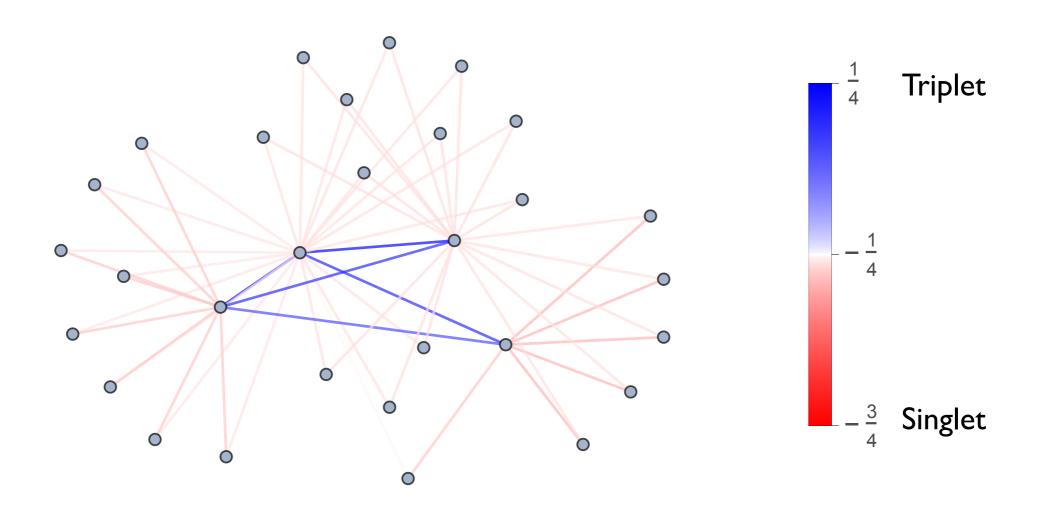


$$N = 30, m = 2$$

Tunable spin distribution:



Pairwise alignment: $\langle \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \rangle$

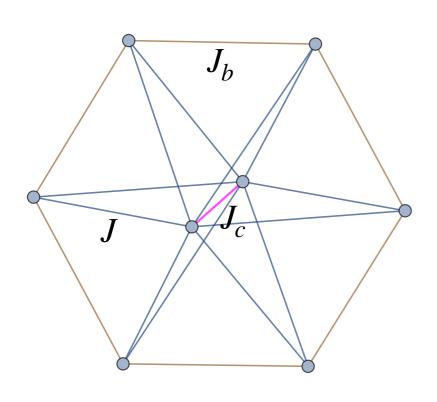


Hubs aligned opposite to other nodes

Can we tune $S_{\rm total}$ in a non-random (frustrated) graph?

 N_c central spins (fully connected) + N_b outer spins

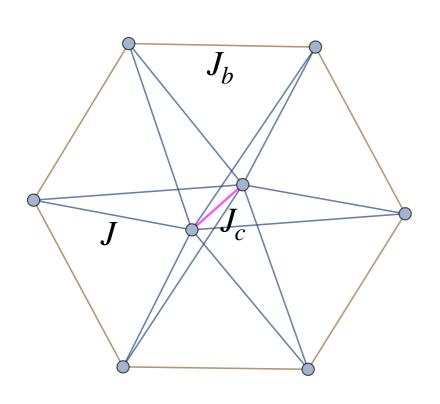
$$J, J_b, J_c > 0$$



$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

 N_c central spins (fully connected) + N_b outer spins

$$J, J_b, J_c > 0$$

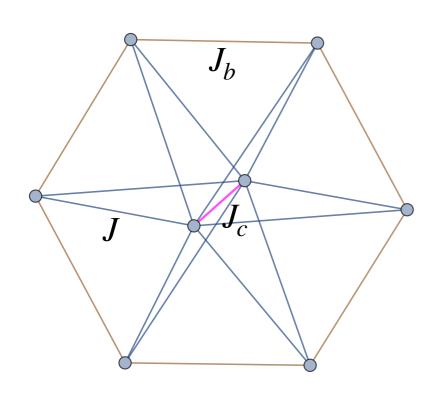


$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
: $S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$

 N_c central spins (fully connected) + N_b outer spins

$$J, J_b, J_c > 0$$



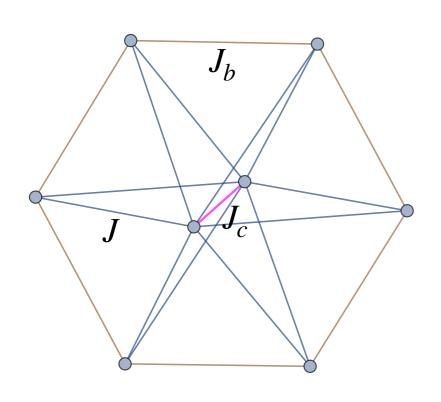
$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
: $S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$

• Lower $J_c: S_c \sim 1 \implies$ if $J_b \ll J: S_b = S_b^{\max} = N_b/2$ $S_{\rm total} \sim (N_b - 1)/2$

 N_c central spins (fully connected) + N_b outer spins

$$J, J_b, J_c > 0$$



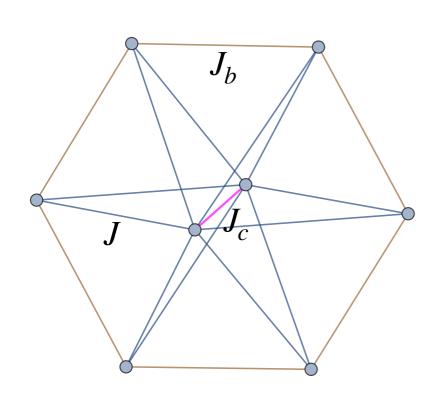
$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
: $S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$

- Lower $J_c: S_c \sim 1 \implies$ if $J_b \ll J: S_b = S_b^{\max} = N_b/2$ $S_{\rm total} \sim (N_b-1)/2$
- $J_c/J \downarrow \Longrightarrow S_c \uparrow$, $J_b/J \uparrow \Longrightarrow S_b \downarrow$ —Variable S_{total}

 N_c central spins (fully connected) + N_b outer spins

$$J, J_b, J_c > 0$$



$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
: $S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$

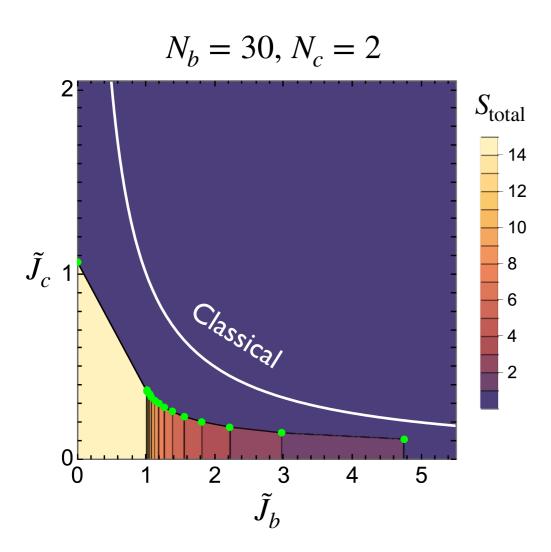
• Lower
$$J_c: S_c \sim 1 \implies$$
 if $J_b \ll J: S_b = S_b^{\max} = N_b/2$
$$S_{\rm total} \sim (N_b-1)/2$$

•
$$J_c/J\downarrow \Longrightarrow S_c\uparrow$$
 , $J_b/J\uparrow \Longrightarrow S_b\downarrow$ —Variable S_{total}

Exactly solvable:

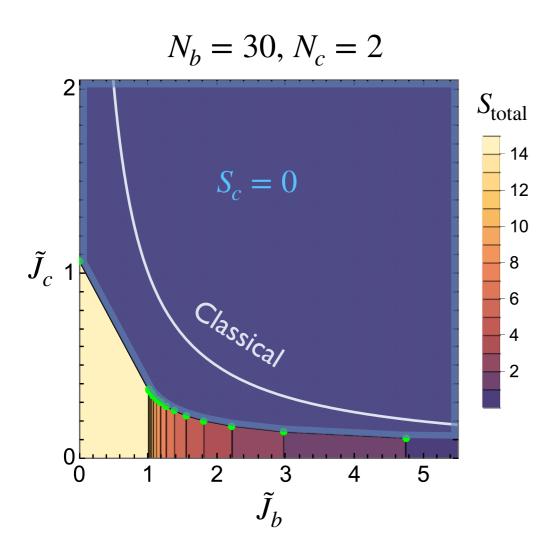
 $S_b, S_c, S_{\text{total}}$ good quantum numbers — Energy minimized for $S_{\text{total}} = S_{bc} := |S_b - S_c|$

$$\implies E(S_b, S_c) = \frac{J}{2} S_{bc}(S_{bc} + 1) + \frac{J_c - J}{2} S_c(S_c + 1) - \frac{J}{2} S_b(S_b + 1) + J_b \underbrace{E_{\min}^{XXX}(N_b, S_b)}_{\text{Bethe Ansatz}}$$



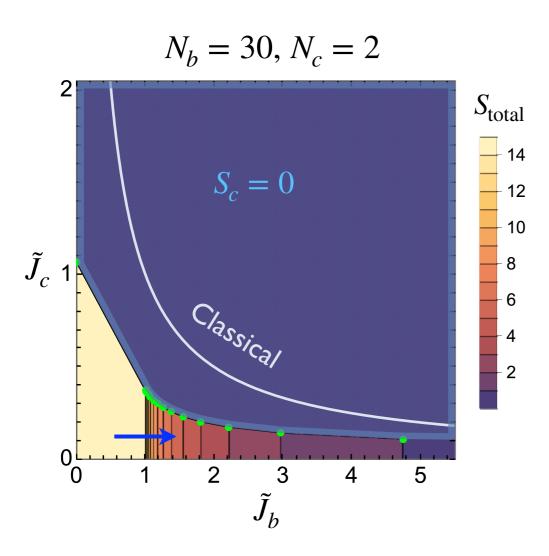
$$\tilde{J}_b := \frac{4J_b}{JN_c}$$

$$\tilde{J}_c := \frac{J_c N_c}{J N_b}$$



$$\tilde{J}_b := \frac{4J_b}{JN_c}$$

$$\tilde{J}_c := \frac{J_c N_c}{J N_b}$$

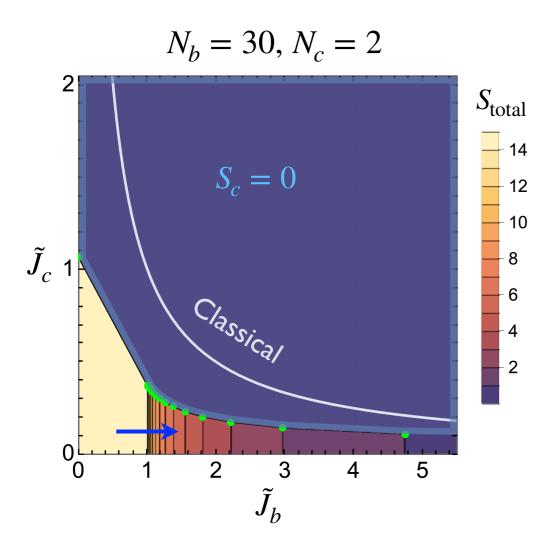


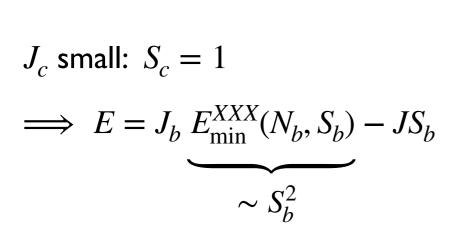
$$J_c \text{ small: } S_c = 1$$

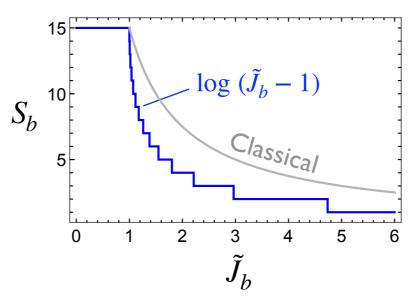
$$\Longrightarrow E = J_b \underbrace{E_{\min}^{XXX}(N_b, S_b)}_{\sim S_b^2} - JS_b$$

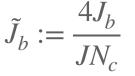
$$\tilde{J}_b := \frac{4J_b}{JN_c}$$

$$\tilde{J}_c := \frac{J_c N_c}{J N_b}$$

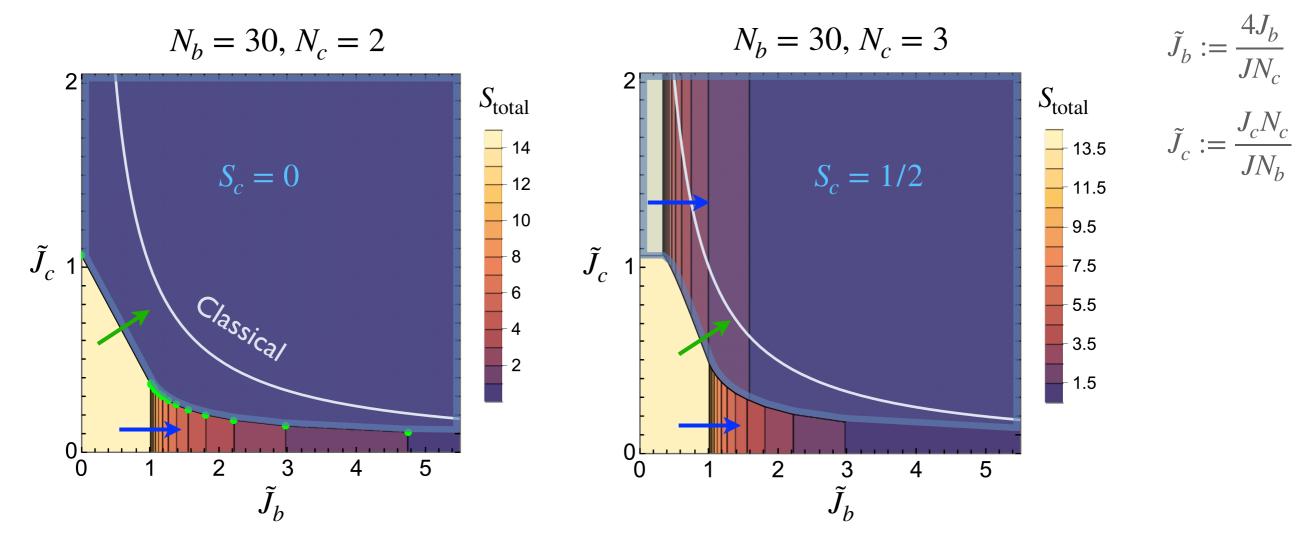






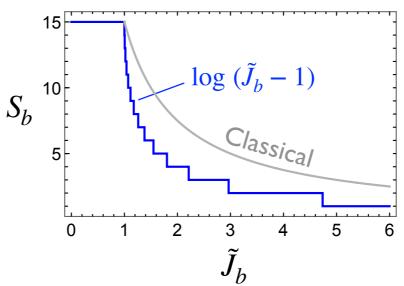


$$\tilde{J}_c := \frac{J_c N_c}{J N_b}$$



$$J_c$$
 small: $S_c = 1$

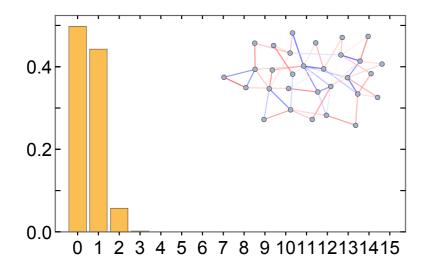
$$\implies E = J_b \underbrace{E_{\min}^{XXX}(N_b, S_b)}_{\sim S_b^2} - JS_b$$



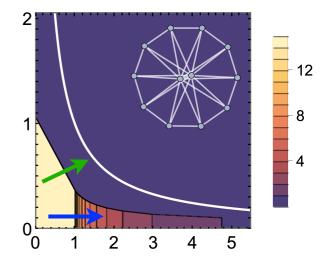
 S_{total} tunable over entire range across discontinuous & continuous transitions

Summary

- Degree mismatch disassortative hubs essential for nonzero $S_{
 m total}$
- $S_{
 m total}$ not sensitive to frustration level & falls w/ more neighbors
- $S_{\rm total}$ tunable over full range in nonbipartite graphs



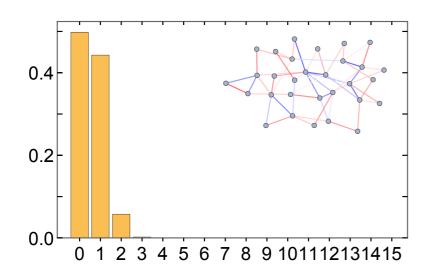


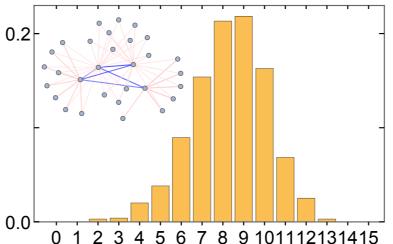


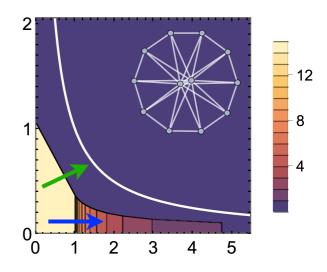
Preethi G and SD, arXiv:2403.09116

Summary

- Degree mismatch disassortative hubs essential for nonzero $S_{
 m total}$
- $S_{
 m total}$ not sensitive to frustration level & falls w/ more neighbors
- $S_{\rm total}$ tunable over full range in nonbipartite graphs







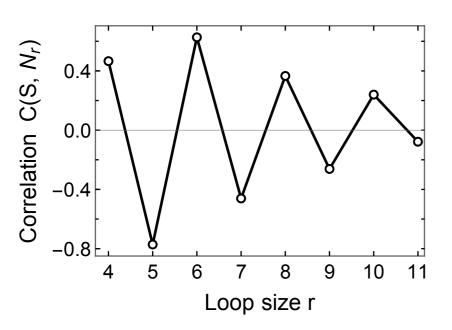
Open questions:

- Structure of ground state spin glass? spin liquids?
- Dynamical properties? Importance of other motifs?
- Why insensitive to frustration Contrast w/ kinetic magnetism

Preethi G and SD, arXiv:2403.09116

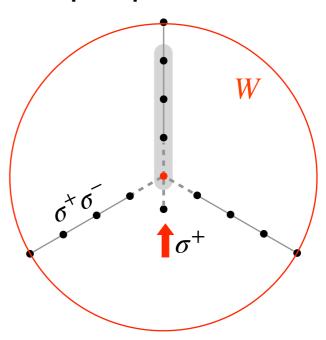
Other recent work

Nagaoka physics on general graph Frustration level key!



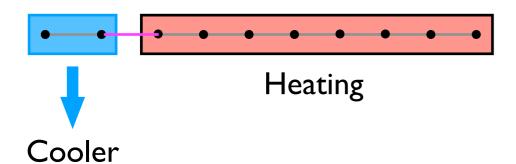
Revathy BS R Moessner

Long-range multipartite entanglement from local pump & static coupling

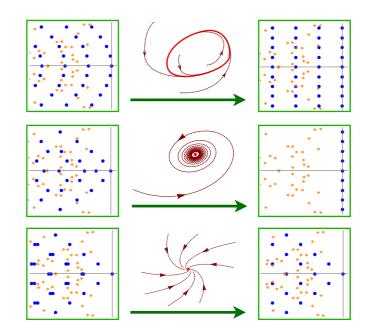


Global heating from local cooling (or vice versa)

Jaswanth Verma Masud Haque Paul McClarty

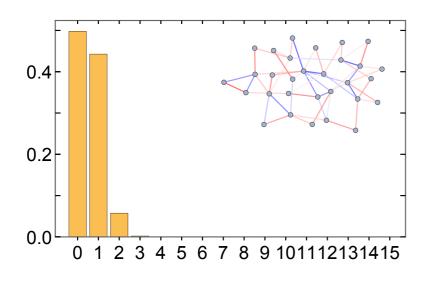


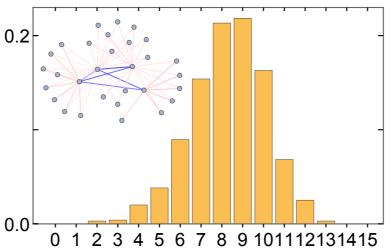
Emergence of classical nonlinear phenomena

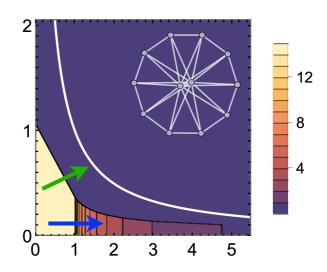


Shu Zhang Masud Haque

- Degree mismatch disassortative hubs essential for nonzero $S_{
 m total}$
- $S_{
 m total}$ not sensitive to frustration level & falls w/ more neighbors
- $S_{\rm total}$ tunable over full range in nonbipartite graphs







Open questions:

- Structure of ground state spin glass? spin liquids?
- Dynamical properties? Importance of other motifs?
- Why insensitive to frustration Contrast w/ kinetic magnetism

Preethi G and SD, arXiv:2403.09116